Project description:Comparsion of proteomes of Campylobacter fetus subsp. fetus to compare protein level via iBAQ analysis, expression (by LFQ) and coverage between Campylobacter fetus subsp. fetus strain82-40 vs Campylobacter fetus subsp. fetus strain ATCC 27374
Project description:In order to study the function of the Campylobacter jejuni Cj0667 gene, a series of experiments were carried out. Two strains were constructed: a Cj0667 knockout strain and a strain with a second copy over-expressing Cj0667 from an fdxA promoter. The transcriptomes of these were all compared to the wild-type strain. The arrays are all from RNA isolated in mid-exponential growth.
Project description:Cj0440c, a putative transcriptional regulator, was over-expressed in the high-level erythromycin-resistant (Eryr) Campylobacter jejuni strains. To determine the role of Cj0440c on the development and fitness of erythromycin resistance in C. jejuni, we knocked out Cj0440c in Eryr strain (R) to obtain the Cj0440c mutants (RM). Then we compared the transcriptome of the Cj0440c mutant with that of the parent strain using DNA microarray. These comparisons identified 9 genes that showed a M-bM-^IM-%2-fold change in expression in RM. The differentially expressed genes in RM are related to flagellar biosynthesis and unknown functions. What's more, katA, encoding catalase, down-regulated in RM. Cj0440c may progress flagellar genes expression, help to escape drug pressure and disseminate and colonize smoothly, and Cj0440c in Eryr Campylobacter may protect bacteria from harmful oxygen stress from the host immune system, other microorganism in host intestinal and its own products. These findings indicate that Cj0440c is essential for the fitness (growth) of resistant C. jejuni by controlling the expression of several genes involved in flagellar assembly and catalase, enhancing cell motility for colonization and invasion under the pressure of drug. This study widened our understanding on the molecular mechanism of resistance and provides scientific reference for drug research and application. An eight-chip study using total RNA recoverd from four separate resistant-type cultures of Erythrocin-resistant Campylobacter jejuni NCTC 111168 (R) and four separate cultures of a mutant strain, erythrocin-resistant Campylobacter jejuni NCTC 11168 delta- Cj0440c (RM), in which Cj0440c is deleted. Each chip measures the expression level of 1634 genes from Campylobacter jejuni NCTC 11168.
Project description:In order to study the function of the Campylobacter jejuni Cj1501 gene, a series of experiments were carried out. Three strains were constructed: a Cj1501 knockout strain, a strain where the Cj1501 knockout was complemented in trans, and a strain with a second copy over-expressing Cj1501 from an fdxA promoter. The transcriptomes of these were all compared to the wild-type strain. The arrays are all from RNA isolated in mid-exponential growth from independent biological replicates.