Project description:Menispermum dauricum is a woody liana with great medicinal value. In the current study, we assembled the first chloroplast (cp) genome of M. dauricum. The whole chloroplast genome is 158,623?bp in length, with one large copy region (LSC: 88,879?bp), a small single copy region (SSC: 20,644?bp), and two inverted repeats (IR: 24,550?bp). The cp genome contains 114 unique genes with 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. In our phylogeny of Ranunculales, Papaveraceae is found to be the basal group of Ranunculales and M. dauricum is sister to Stephania japonica.
Project description:The purpose of this study was to investigate the structural characterization and immunological activity in vitro and in vivo of a polysaccharide from the rhizome of Menispermum dauricum. A new polysaccharide named MDP was isolated from the rhizome of Menispermum dauricum by hot water extraction, ethanol precipitation, anion-exchange, and gel-filtration chromatography. MDP was homogeneous and had a molecular weight of 6.16 ×103 Da, and it was an α-D-glucan containing a (1 → 6)-linked backbone, with a glucosyl residue at the C-3 position along the main chain. MDP exhibited immunological activity in vitro, which could significantly promote the proliferation and phagocytosis of RAW264.7 cells and the release of TNF-α and IL-6 factors. For immunological activity in vivo. MDP could significantly increase the thymus and spleen indices, enhance the macrophage function, increase the level of cytokine (IL-6 and TNF-α) and immunoglobulin IgM in the serum and regulate T lymphocyte subsets. Furthermore, MDP elevated the expression of the critical nodes in the TLR4-MyD88 signaling pathways in vivo. These results support the concept that MDP may exhibit immunological activity through TLR4-MyD88 signaling pathway in vivo.
Project description:This research aimed to establish the gas chromatography (GC) fingerprints and examine the immunomodulatory activity of the rhizome of Menispermum dauricum polysaccharides. In this study, the preparation conditions were optimized by the response surface method (RSM). GC is an effective and sensitive technique employed to measure the composition of monosaccharides; the GC fingerprints of total polysaccharides from 10 batches of the rhizome of M. dauricum (tMDP) were established, and chemometrics methods were adopted to examine the differences and similarities of tMDP from distinct regions. The similarity evaluation illustrated that the polysaccharides derived from the rhizome of M. dauricum from different origins were highly similar. The results of principal components analysis (PCA) illustrated that all the tMDPs may be integrated into one group within the 95% confidence interval, but the rhizome of M. dauricum from different origins could also be distinguished in the plot of PCA scores. Then, the major bioactive fraction MDP was purified and obtained by column chromatography. Our previous study showed that MDP exhibited significant immunomodulatory activity, but the mechanism of the in vitro immunomodulatory activity of MDP is unclear. The macrophage activation induced by MDP was abolished when Toll-like receptor 4 (TLR4) signaling was knocked down by the TLR4 inhibitor. Furthermore, western blot analysis illustrated that MDP activated RAW264.7 cells through MAPKs and NFκB pathways induced by TLR4. This research offers a theoretical foundation for quality control and additional study as a potential immunomodulator of MDP.