Project description:IL-15-responsive CD122+ macrophages (CD122+Macs) develop in the uterus during normal pregnancy. We aimed to understand the signals driving macrophages to adopt this fate. We aimed to determine how CD122+Macs and conventional uterine macrophages differ transcriptionally.
Project description:Prior to pregnancy, hormonal changes lead to cellular adaptations in the endometrium allowing for embryo implantation. Critical for successful pregnancy establishment, innate immune cells constitute a significant proportion of uterine cells prior to arrival of the embryo and throughout the first trimester in humans and animal models. Abnormal uterine immune cell function during implantation is believed to play a role in multiple adverse pregnancy outcomes. Current work in humans has focused on uterine immune cells present after pregnancy establishment, and limited in vitro models exist to explore unique functions of these cells. With single-cell RNA-sequencing (scRNAseq), we comprehensively compared the human uterine immune landscape of the endometrium during the window of implantation and the decidua during the first trimester of pregnancy. We uncovered global and cell-type-specific gene signatures for each timepoint. Immune cells in the endometrium prior to implantation expressed genes associated with immune metabolism, division, and activation. In contrast, we observed widespread interferon signaling during the first trimester of pregnancy. We also provide evidence of specific inflammatory pathways enriched in pre- and post-implantation macrophages and natural killer (NK) cells in the uterine lining. Using our novel implantation-on-a-chip (IOC) to model human implantation ex vivo, we demonstrate for the first time that uterine macrophages strongly promote invasion of extravillous trophoblasts (EVTs), a process essential for pregnancy establishment. Pre- and post-implantation uterine macrophages promoted EVT invasion to a similar degree as pre- and post-implantation NK cells on the IOC. This work provides a foundation for further investigation of the individual roles of uterine immune cell subtypes present prior to embryo implantation and during early pregnancy, which will be critical for our understanding of pregnancy complications associated with abnormal trophoblast invasion and placentation.
Project description:Uterine serous carcinoma (USC) represents only a small proportion of all uterine cancer cases, but patients with this aggressive subtype typically have high rates of chemotherapy resistance, disease recurrence, and constitute a disproportionately high percentage of the deaths. Improving the clinical management of USC is predicated by better characterization of the tumor microenvironment (TME) and the molecular features driving disease pathology. To improve our understanding of intratumoral heterogeneity (ITH) within the USC TME, we investigated proteome and transcriptome alterations in spatially resolved laser microdissection (LMD) enriched cellular subpopulations from nine USC patient tumor tissue specimens. LMD enriched samples were analyzed via liquid chromatography-tandem mass spectrometry (LC-MS/MS), reverse phase protein microarray (RPPA), and targeted RNA-sequencing (RNA-seq).
Project description:<p>The ovaries and uterus are crucial reproductive organs in mammals, and their coordinated development ensures the normal development of sexual maturity and reproductive capacity. This study aimed to comprehensively capture the different physiological stages of the goat's sexual maturation by selecting four specific time points. We collected samples of ovarian and uterine tissues from five female Jining Gray goats at each time point: after birth (D1), 2-month-old (M2), 4-month-old (M4) and 6-month-old (M6). By combining transcriptomic sequencing of 40 samples (including rRNA-depleted RNA-seq libraries with 3607.8 million reads and miRNA-seq libraries with 444.0 million reads) and metabolomics analysis, we investigated the transcriptomic mechanisms involved in reproductive regulation in the ovary and uterus during sexual maturation, as well as the changes in metabolites and their functional potential. Additionally, we analyzed blood hormone indices and uterine tissue sections to examine temporal changes. These datasets will provide a valuable reference for the reproductive regulation of the ovary and uterus, as well as the regulation of metabolites during sexual maturation in goats.</p><p><br></p><p><strong>Uterine data</strong> is reported in the current study <a href='https://www.ebi.ac.uk/metabolights/MTBLS9795' rel='noopener noreferrer' target='_blank'><strong>MTBLS9795</strong></a>.</p><p><strong>Ovarian data</strong> is reported in <a href='https://www.ebi.ac.uk/metabolights/MTBLS9794' rel='noopener noreferrer' target='_blank'><strong>MTBLS9794</strong></a>.</p>