Project description:Species delimitation studies based on integrative taxonomic approaches have received considerable attention in the last few years, and have provided the strongest hypotheses of species boundaries. We used three lines of evidence (molecular, morphological, and niche envelopes) to test for species boundaries in Peruvian populations of the Liolaemus walkeri complex. Our results show that different lines of evidence and analyses are congruent in different combinations, for unambiguous delimitation of three lineages that were "hidden" within known species, and now deserve species status. Our phylogenetic analysis shows that L. walkeri, L. tacnae and the three new species are strongly separated from other species assigned to the alticolor-bibronii group. Few conventional morphological characters distinguish the new species from closely related taxa and this highlights the need to integrate other sources of data to erect strong hypothesis of species limits. A taxonomic key for known Peruvian species of the subgenus Lioalemus is provided.
Project description:Several fungi classified in the genus Tilletia are well-known to infect grass species including wheat (Triticum). Tilletia indica is a highly unwanted wheat pathogen causing Karnal bunt, subject to quarantine regulations in many countries. Historically, suspected Karnal bunt infections were identified by morphology, a labour-intensive process to rule out other tuberculate-spored species that may be found as contaminants in grain shipments, and the closely-related pathogen T. walkeri on ryegrass (Lolium). Molecular biology advances have brought numerous detection tools to discriminate Tilletia congeners (PCR, qPCR, etc.). While those tests may help to identify T. indica more rapidly, they share weaknesses of targeting insufficiently variable markers or lacking sensitivity in a zero-tolerance context. A recent approach used comparative genomics to identify unique regions within target species, and qPCR assays were designed in silico. This study validated four qPCR tests based on single-copy genomic regions and with highly sensitive limits of detection (~200 fg), two to detect T. indica and T. walkeri separately, and two newly designed, targeting both species as a complex. The assays were challenged with reference DNA of the targets, their close relatives, other crop pathogens, the wheat host, and environmental specimens, ensuring a high level of specificity for accurate discrimination.
Project description:The DNA isolated from 44 either frozen or FFPE Neuroendocrine Neoplasm (NEN) was analysed by NGS, to identify genes more likely to be subject to sequence variations among 523 cancer-related ones.
Project description:Plasma DNA from 558 malignancies, 263 benign and borderline tumors and 367 healthy control samples were collected and subjected to random short-gun whole genome sequencing.