Project description:Prunus persica is one of the main stone fruit crops in Crimea and southern Russia. The P. persica genome has recently been sequenced and annotated in good quality. However, for a deeper assessment of the peach genome, it is necessary to include in the research other cultivars that are in the collection of the Nikitsky Botanical Garden. The cultivars of the Nikitsky Botanical Garden are unique and differ from Western European and American ones, as they are derived from cultivars and forms originating from Central Asian, North Caucasian, Transcaucasian and Eastern European countries. In this paper, we present the assembly of the P. persica cv. ’Sovetskiy’ genome obtained using Oxford Nanopore long reads and Illumina short reads by hybrid assembly methods. The assembled genome of P. persica cv. ’Sovetskiy’ is 206.26 MB in 226 scaffolds, with N50 24 Mb, including 8 chromosomes. It contains 27140 coding genes, 26973 (99.38%) of which are annotated in at least one functional database. More than 36.05% of the genome regions were identified as repeating elements.
Project description:The sweet cherry (Prunus avium) is one of the most economically important fruit species in the world. However, there is a limited amount of genetic information available for this species, which hinders breeding efforts at a molecular level. We were able to describe a high-quality reference genome assembly and annotation of the diploid sweet cherry (2n = 2x = 16) cv. Tieton using linked-read sequencing technology. We generated over 750 million clean reads, representing 112.63 GB of raw sequencing data. The Supernova assembler produced a more highly-ordered and continuous genome sequence than the current P. avium draft genome, with a contig N50 of 63.65 KB and a scaffold N50 of 2.48 MB. The final scaffold assembly was 280.33 MB in length, representing 82.12% of the estimated Tieton genome. Eight chromosome-scale pseudomolecules were constructed, completing a 214 MB sequence of the final scaffold assembly. De novo, homology-based, and RNA-seq methods were used together to predict 30,975 protein-coding loci. 98.39% of core eukaryotic genes and 97.43% of single copy orthologues were identified in the embryo plant, indicating the completeness of the assembly. Linked-read sequencing technology was effective in constructing a high-quality reference genome of the sweet cherry, which will benefit the molecular breeding and cultivar identification in this species.
Project description:Prunus cerasifera Ehrh. 'Pissardii', is a widespread ornamental and fruit tree. Here, we reported the complete chloroplast (cp) genome of P. cerasifera 'Pissardii' (GenBank accession number: MN418903). The total cp genome is 157,952?bp in length, displayed a typical quadripartite structure, including a large single copy region (LSC) of 86,286?bp and a small single copy region (SSC) of 18,926?bp, which are separated by a pair of inverted repeat (IR) regions of 26,370?bp. The overall guanine-cytosine (GC) content of the genome sequence is 36.7%. The cp genome encodes 134 unique genes, including 84 protein-coding genes, 42 tRNA genes, and 8 rRNA genes. Phylogenetic analysis of 27 chloroplast genomes showed that P. cerasifera 'Pissardii' was closely related to P. humilis in Rosaceae.
Project description:Sweet cherry (Prunus avium) is an economically significant fruit species in the genus Prunus. However, in contrast to other important fruit trees in this genus, only one draft genome assembly is available for sweet cherry, which was assembled using only Illumina short-read sequences. The incompleteness and low quality of the current sweet cherry draft genome limit its use in genetic and genomic studies. A high-quality chromosome-scale sweet cherry reference genome assembly is therefore needed. A total of 65.05 Gb of Oxford Nanopore long reads and 46.24 Gb of Illumina short reads were generated, representing ~190x and 136x coverage, respectively, of the sweet cherry genome. The final de novo assembly resulted in a phased haplotype assembly of 344.29 Mb with a contig N50 of 3.25 Mb. Hi-C scaffolding of the genome resulted in eight pseudochromosomes containing 99.59% of the bases in the assembled genome. Genome annotation revealed that more than half of the genome (59.40%) was composed of repetitive sequences, and 40,338 protein-coding genes were predicted, 75.40% of which were functionally annotated. With the chromosome-scale assembly, we revealed that gene duplication events contributed to the expansion of gene families for salicylic acid/jasmonic acid carboxyl methyltransferase and ankyrin repeat-containing proteins in the genome of sweet cherry. Four auxin-responsive genes (two GH3s and two SAURs) were induced in the late stage of fruit development, indicating that auxin is crucial for the sweet cherry ripening process. In addition, 772 resistance genes were identified and functionally predicted in the sweet cherry genome. The high-quality genome assembly of sweet cherry obtained in this study will provide valuable genomic resources for sweet cherry improvement and molecular breeding.