Project description:Menin protein is encoded by the multiple endocrine neoplasia type 1 (MEN1) gene. It remains an enigmatic protein, known as a tumor suppressor but its roles in cancer development have attracted significant attention in recent years. The goals of this study is to understand how the Menin tumor suppressor can be oncogenic in Prostate, we have profiled Menin chromatin occupancy by chromatin immunoprecipitation coupled to high-throughput DNA sequencing (ChIP-seq) in the normal prostate model (PNT1A) and in a different stage of prostate cancer CS model (LNCaP) and CR model (PC-3).
Project description:The TMPRSS2-ERG gene fusion is the most frequent alteration observed in human prostate cancer but its role in disease progression is still debated. In this study, we uncovered a novel molecular mechanism promoting progression in ERG-fusion positive prostate cancer. We show that ERG is methylated by Enhancer of zest homolog 2 (EZH2) at a specific lysine residue (K362) located within the internal auto-inhibitory domain. Mechanistically, K362 mono- methylation prevents intra-domain interactions, favors DNA binding and promotes ERG transcriptional and oncogenic activity in cellular and mouse models. Consistently with the involvement in ERG oncogenesis, we found that K362 methylation was associated with disease progression in ERG transgenic mouse models and was enhanced by PTEN deficiency and AKT activation, which promoted EZH2 substrate switching from histone H3K27 to ERG. Conversely, EZH2 inhibition blocked ERG methylation along with ERG-induced transcriptional and phenotypic reprogramming in cell cultures and ERG/PTEN mice. We found that ERG and EZH2 co-occupy several genomic regions forming prevalently co-activating complexes. The network of ERG/EZH2 co-regulated target genes was enriched of functionally aggressive features and was associated preferentially with concomitant ERG gain and PTEN loss, castration-resistance and adverse clinical outcome in prostate cancer patients. Collectively, these findings identify ERG methylation as a novel post-translational modification sustaining disease progression in ERG-positive prostate cancers. Our data also provide an attractive rationale for developing molecularly targeted therapeutics to antagonize ERG oncogenic activity.
Project description:The chromosome 8q21 locus, which contains NKX3.1 and microRNA (miR)-3622 family (miR-3622a/b), is a frequently deleted region in human prostate cancer. Thus, miR-3622 is proposed as a tumor suppressor in various cancers, including prostate cancer, but its role remains debatable. In the present study, we found that mature miR-3622b-3p expression was higher in human prostate cancer than in normal prostate, while expression of miR-3622a was downregulated in human prostate cancer. Also, miR-3622b-3p facelifted cell proliferation, migration and invasion, whereas miR-3622a-3p inhibited cell migration and invasion but not proliferation in human prostate cancer cells. To address the role of miR-3622 locus, we knockout (KO) endogenous miR-3622, including both miR-3622a/b, in various human prostate cancer cell lines. Our data showed that miR-3622 KO reduced cell proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. Functional analysis revealed that miR-3622 regulated p53 downstream gene network, including p21, c-MYC, and AIFM2, to control the cell cycle and apoptosis. Furthermore, using CRISPR interference, miRNA/mRNA immunoprecipitation assay, and dual-luciferase assay, we identified AIFM2, a direct target gene of miR-3622b-3p, that is responsible for miR-3622 KO-induced apoptosis. Also, we established a miR-3622-AIFM2 axis that contributes to oncogenic function during tumor progression. In addition, miR-3622 KO inhibited the epithelial-mesenchymal transition via upregulation of vimentin involved in prostate cancer metastasis. Our results suggest that miR-3622b-3p is overexpressed in human prostate cancer and plays an oncogenic role in tumor progression and metastasis via repression of p53 signaling, especially through a miR-3622-AIFM2 axis. On the other hand, deletion of miR-3622 at 8q21 locus in human prostate cancer may reduce oncogenic effects on tumor progression and metastasis.
Project description:Long noncoding RNAs (lncRNAs) have recently been associated with the development and progression of a variety of human cancers. However, to date, the interplay between known oncogenic or tumor suppressive events and lncRNAs has not been well described. Here the novel lncRNA, Prostate Cancer-Associated Transcript 29 (PCAT29), is characterized along with its relationship to the androgen receptor (AR). PCAT29 is suppressed by dihydrotestosterone (DHT) and up-regulated upon castration therapy in a prostate cancer xenograft model. PCAT29 knockdown significantly increased proliferation and migration of prostate cancer cells, while PCAT29 overexpression conferred the opposite effect and suppressed growth and metastases of prostate tumors in chick chorioallantoic membrane (CAM) assays. Finally, in prostate cancer patient specimens, low PCAT29 expression correlated with poor prognostic outcomes. Taken together, these data expose PCAT29 as an androgen regulated tumor suppressor in prostate cancer PCAT29 was knockdown using shRNA in two prostate cancer cell lines VCaP and LNCaP.
Project description:Samples of benign prostate tissue, localized prostate cancer tissue, and metastatic prostate cancer tissue are profiled to study expression changes in diagnosis and progression of prostate cancer. Each tissue sample is also profiled for metabolomics data Keywords: Cancer Progression 41 samples were analyzed (16 benign prostate tissue, 12 local prostate cancer tissue, 13 metastatic prostate cancer tissue)
Project description:Elucidating oncogenic effects of androgen signaling in prostate tumorigenesis through aberrant activation of IGF1 and WNT signaling pathways
Project description:The tumor suppressor menin has dual functions, acting either as a tumor suppressor or as an oncogene/oncoprotein, depending on the oncological context. Triple-negative breast cancer (TNBC) is characterized by lack of expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 and is often a basal-like breast cancer. TNBC is associated with a dismal prognosis and an insufficient response to chemotherapies. Previously, menin was shown to play a proliferative role in ER-positive breast cancer; however, functions of menin in TNBC remains unknown. We have demonstrated that menin is expressed in various TNBC subtypes with the strongest menin expression in the TNBC Hs 578T cells. Depletion of menin by antisense oligonucleotide inhibited cell proliferation, enhanced apoptosis, and induced cell cycle arrest in Hs 578T cells, highlighting oncogenic functions of menin in this TNBC model. To better understand the menin function, we performed AP-MS (Affinity Purification-Mass Spectrometry) using specific antibody against menin. Analysis of menin interactome suggested that menin could drive TNBC tumorigenesis through regulation of the MLL/KMT2A-driven transcriptional activity, mRNA 3’ end processing and apoptosis.