Project description:Nowadays, there are different ICU scoring systems to predict the likelihood of mortality, such as Acute Physiology And Chronic Health Condition (APACHE), Sequential Organ Failure Assessment (SOFA), and SAPS (Simplified Acute Physiology Score). Theses risk scores are based on the use of physiologic and other clinical data. However, the use of these score systems depend on the clinical trust in the reliability and predictions by physicians. In this work, we have evaluated the expression profile by microarray analysis from postsurgical patients with the aim of proposing a candidate set genes as a mortality risk score.
Project description:We aimed to predict obesity risk with genetic data, specifically, obesity-associated gene expression profiles. Genetic risk score was computed. The genetic risk score was significantly correlated with BMI when an optimization algorithm was used. Linear regression and built support vector machine models predicted obesity risk using gene expression profiles and the genetic risk score with a new mathematical method.
Project description:Despite continual efforts to establish pre-operative prognostic model of gastric cancer by using clinical and pathological parameters, a staging system that reliably separates patients with early and advanced gastric cancer into homogeneous groups with respect to prognosis does not exist. With use of microarray and quantitative RT-PCR technologies, we exploited series of experiments in combination with complementary data analyses on tumor specimens from 161 gastric cancer patients. Various statistical analyses were applied to gene expression data to uncover subgroups of gastric cancer, to identify potential biomarkers associated with prognosis, and to construct molecular predictor of risk from identified prognostic biomarkers.Two subgroups of gastric cancer with strong association with prognosis were uncovered. The robustness of prognostic gene expression signature was validated in independent patient cohort with use of support vector machines prediction model. For easy translation of our finding to clinics, we develop scoring system based on expression of six genes that can predict the likelihood of recurrence after curative resection of tumors. In multivariate analysis, our novel risk score was an independent predictor of recurrence (P=0.004) in cohort of 96 patients, and its robustness was validated in two other independent cohorts. We identified novel prognostic subgroups of gastric cancer that are distinctive in gene expression patterns. Six-gene signature and risk score derived from them has been validated for predicting the likelihood of survival at diagnosis. 65 primary gastric adenocarcinoma, 6 GIST and 19 surrounding normal fresh frozen tissues were used for microarray. All the tissues were obtained after curative resection after pathologic confirm at Yonsei cancer center(Seoul, Korea). Microarray experiment and data analysis were done at Dept. of systems biology, MDACC DNA microarray (Illumina human V3)
Project description:Despite continual efforts to establish pre-operative prognostic model of gastric cancer by using clinical and pathological parameters, a staging system that reliably separates patients with early and advanced gastric cancer into homogeneous groups with respect to prognosis does not exist. With use of microarray and quantitative RT-PCR technologies, we exploited series of experiments in combination with complementary data analyses on tumor specimens from 161 gastric cancer patients. Various statistical analyses were applied to gene expression data to uncover subgroups of gastric cancer, to identify potential biomarkers associated with prognosis, and to construct molecular predictor of risk from identified prognostic biomarkers.Two subgroups of gastric cancer with strong association with prognosis were uncovered. The robustness of prognostic gene expression signature was validated in independent patient cohort with use of support vector machines prediction model. For easy translation of our finding to clinics, we develop scoring system based on expression of six genes that can predict the likelihood of recurrence after curative resection of tumors. In multivariate analysis, our novel risk score was an independent predictor of recurrence (P=0.004) in cohort of 96 patients, and its robustness was validated in two other independent cohorts. We identified novel prognostic subgroups of gastric cancer that are distinctive in gene expression patterns. Six-gene signature and risk score derived from them has been validated for predicting the likelihood of survival at diagnosis.
Project description:Reliable non-invasive tools to diagnose at risk metabolic dysfunction-associated steatohepatitis (MASH) are urgently needed to improve management. We developed a risk stratification score incorporating proteomics-derived serum markers with clinical variables to identify high risk MASH patients (NAFLD Activity Score (NAS) >4 and fibrosis score >2). In this three-phase proteomic study of biopsy-proven metabolic dysfunction-associated steatotic fatty liver disease (MASLD), we first developed a multi-protein predictor for discriminating NAS>4 based on SOMAscan proteomics quantifying 1,305 serum proteins from 57 US patients. Four key predictor proteins were verified by ELISA in the expanded US cohort (N=168), and enhanced by adding clinical variables to create the 9-feature MASH Dx Score which predicted MASH and also high risk MASH (F2+). The MASH Dx Score was validated in two independent, external cohorts from Germany (N=139) and Brazil (N=177). The discovery phase identified a 6-protein classifier that achieved an AUC of 0.93 for identifying MASH. Significant elevation of four proteins (THBS2, GDF15, SELE, IGFBP7) was verified by ELISA in the expanded discovery and independently in the two external cohorts. MASH Dx Score incorporated these proteins with established MASH risk factors (age, BMI, ALT, diabetes, hypertension) to achieve good discrimination between MASH and MASLD without MASH (AUC:0.87- discovery; 0.83- pooled external validation cohorts), with similar performance when evaluating high risk MASH F2-4 (vs. MASH F0-1 and MASLD without MASH). The MASH Dx Score offers the first reliable non-invasive approach combining novel, biologically plausible ELISA-based fibrosis markers and clinical parameters to detect high risk MASH in patient cohorts from the US, Brasil and Europe.
Project description:In AML, most patients are initiated on standard chemotherapy and afterwards assigned to a post-remission strategy based on genetically-defined risk categories. However, outcomes remain heterogeneous, indicating the need for novel biomarker tests that can rapidly and accurately identify high-risk patients, allowing better stratification of both induction and post-remission therapy. As patient outcomes are linked to leukemia stem cell (LSC) properties that confer therapy resistance and drive relapse, LSC-based biomarkers may be highly informative. We tested 227 CD34/CD38 cell fractions from 78 AML patients for LSC activity in xenotransplantation assays. Comparison of microarray-based gene expression (GE) profiles between 138 LSC+ and 89 LSC? fractions identified 104 differentially-expressed LSC-specific genes. To obtain prognostic signatures, we performed statistical regression analysis of LSC GE against patient outcome using a training cohort of 495 AML patients treated with curative intent. A score calculated as the weighted sum of expression of 17 LSC signature genes (LSC17) was strongly associated with survival in 4 independent datasets (716 AML cases) spanning all risk categories in multi-variate analysis; an optimized 3-gene sub-score (LSC3) was prognostic in favorable risk subsets. These scores were robust across GE technology platforms, including the clinically serviceable NanoString system (LSC17: HR=2.73, P<0.0001; LSC3: HR=6.3, P<0.02). The LSC17 and LSC3 scores provide rapid and accurate identification of high-risk patients for whom conventional chemotherapy is non-curative. These scores will enable evaluation in clinical trials of whether such patients may benefit from novel and/or more intensified therapies during induction or in the post-remission setting.
Project description:In AML, most patients are initiated on standard chemotherapy and afterwards assigned to a post-remission strategy based on genetically-defined risk categories. However, outcomes remain heterogeneous, indicating the need for novel biomarker tests that can rapidly and accurately identify high-risk patients, allowing better stratification of both induction and post-remission therapy. As patient outcomes are linked to leukemia stem cell (LSC) properties that confer therapy resistance and drive relapse, LSC-based biomarkers may be highly informative. We tested 227 CD34/CD38 cell fractions from 78 AML patients for LSC activity in xenotransplantation assays. Comparison of microarray-based gene expression (GE) profiles between 138 LSC+ and 89 LSC? fractions identified 104 differentially-expressed LSC-specific genes. To obtain prognostic signatures, we performed statistical regression analysis of LSC GE against patient outcome using a training cohort of 495 AML patients treated with curative intent. A score calculated as the weighted sum of expression of 17 LSC signature genes (LSC17) was strongly associated with survival in 4 independent datasets (716 AML cases) spanning all risk categories in multi-variate analysis; an optimized 3-gene sub-score (LSC3) was prognostic in favorable risk subsets. These scores were robust across GE technology platforms, including the clinically serviceable NanoString system (LSC17: HR=2.73, P<0.0001; LSC3: HR=6.3, P<0.02). The LSC17 and LSC3 scores provide rapid and accurate identification of high-risk patients for whom conventional chemotherapy is non-curative. These scores will enable evaluation in clinical trials of whether such patients may benefit from novel and/or more intensified therapies during induction or in the post-remission setting.