Project description:RNA-Sequencing of basal subtype triple negative breast cancer cells, MDA-MB-231. MDA-MB-231 cells were lentivirally transduced with pLKO short-hairpin (sh) luciferase control or shZnf148 in triplicates. Differentially expressed genes by the shRNA compared to the control were determined.
Project description:Dicer, RNase III endonuclease, is an essential enzyme in miRNA biogenesis that regulates target gene expression, and it has been reported that aberrant expressions of Dicer associate with the clinical outcomes of patients in various cancers. To explore the miRNA differencial expression regulated by Dicer in MDA-MB-231/E1A cells, the microarray profiling analysis was employed to conduct differentially expressed miRNAs in stable MDA-MB-231/vector, MDA-MB-231/E1A, and MDA-MB-231/E1A/shDicer cells. The four groups including vector control, E1A-expressing and Dicer knockdown in E1A-expressing MDA-MB-231 cells were harvested and RNA were isolated. Two independent experiments were performed for each group.
Project description:Identification of changes in protein expression by label-free shotgun proteomics in breast cancer MDA-MB-231 cells with knockdown of ELOVL5 and IGFBP6 genes in comparison with control MDA-MB-231 cells.
Project description:We used MYOSIN10 shRNA to stably silence the expression of endogenous MYOSIN10 in Breast cancer cell MDA-MB-231. To investigate the inner change of cells with silenced MYOSIN10, we conducted a genome-wide screening for all potential genes affected by MYOSIN10 shRNA using Affymetrix Human Genome U133 plus 2.0 array. We showed genes affected by MYOSIN10 knockdown in breast cancer cell MDA-MB-231
Project description:CD44, an adhesion molecule that binds to extracellular matrix, primarily to hyaluronan (HA), has been implicated in cancer cell migration, invasion, and metastasis. CD44 has also recently been recognized as a marker for stem cells of several types of cancer. However, the roles of CD44 in the development of bone metastasis still remain unclear. To explore this issue, we established the MDA-MB-231 human breast cancer cells stably expressing short hairpin RNA against CD44. The CD44-knockdown MDA-MB-231 cells (MDA-MB-231 shCD44-2 and shCD44-3) were analyzed. As control, MDA-MB-231 cells stably expressing shRNA against firefly luciferase (shLuc) were used. Total of three samples. No replicates.
Project description:Dicer, RNase III endonuclease, is an essential enzyme in miRNA biogenesis that regulates target gene expression, and it has been reported that aberrant expressions of Dicer associate with the clinical outcomes of patients in various cancers. To explore the miRNA differencial expression regulated by Dicer in MDA-MB-231/E1A cells, the microarray profiling analysis was employed to conduct differentially expressed miRNAs in stable MDA-MB-231/vector, MDA-MB-231/E1A, and MDA-MB-231/E1A/shDicer cells.
Project description:We used microarrays to investigate gene expression changes induced by the inhibition of RRAS2 expression using shRNA techniques to stably knockdown the endogenous transcripts of this GTPase in human MDA-MB-231-Luc cells. MDA-MB-231-Luc shControl (MDA-Control) and RRAS2-deficient (KDRRAS2.p1) in exponential growth phase were selected for RNA extraction and and hybridization on Affymetrix microarrays.
Project description:Epithelial-to-mesenchymal transition (EMT) is a fundamental process in development and disease. If aberrantly activated it is a trigger for tumour progression and metastasis (Thiery et al 2009 Cell). It is now known that EMT activation is also associated with the maintenance of stem-cell properties (Mani et al. 2008 Cell). Since Zinc-finger enhancer binding transcription factor 1 (ZEB1) is a crucial EMT activator, we analyzed the changes in the gene expression profile that accompany shRNA mediated loss of ZEB1 in MDA MB 231 basal type breast cancer cells. MDA MB 231 is a cell line that exhibits mesenchymal characteristics, but reverts to an epithelial phenotype upon ZEB1 knock down (Spaderna et al. 2008 Cancer Research). MDA MB 231 cells were stably transfected with control (GFP) or ZEB1 shRNA. Upon puromycin selection, single cell clones were picked and characterized. Cells from two control versus two ZEB1 knockdown clones were harvested, total RNA was isolated and processed to hybridization.