Project description:Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function. Mice were fed a Westernized high fat control diet, or the same diet supplemented with 0.5 µmol heme/g diet. One group of control and one group of heme mice received a mixture of broad spectrum Antibiotics (Abx) (ampicilin, neomycin and metronidazole) in their drinking water. After 14 days of intervention, mice were killed and gene expression was profiled in colon.
Project description:The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans. This randomized, placebo-controlled, double-blind study had a 3-armed parallel design. Overweight/obese participants were randomized to oral intake of amoxicillin, vancomycin or placebo for 7 consecutive days. After an overnight fast, subcutaneous adipose tissue biopsies were taken that were subjected to gene expression profiling by array.
Project description:Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.
Project description:The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans.
2016-07-15 | GSE76003 | GEO
Project description:Microbial diversity of olive flounder supply chain
Project description:The human gut is colonized by trillions of microorganisms that influence human health and disease through the metabolism of xenobiotics, including therapeutic drugs and antibiotics. The diversity and metabolic potential of the human gut microbiome have been extensively characterized, but it remains unclear which microorganisms are active and which perturbations can influence this activity. Here, we use flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the human gut contains distinctive subsets of active and damaged microorganisms, primarily composed of Firmicutes, which display marked temporal variation. Short-term exposure to a panel of xenobiotics resulted in significant changes in the physiology and gene expression of this active microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding novel candidate proteins for antibiotic resistance, drug metabolism, and stress response. These results demonstrate the power of moving beyond DNA-based measurements of microbial communities to better understand their physiology and metabolism. RNA-Seq analysis of the human gut microbiome during exposure to antibiotics and therapeutic drugs.
Project description:Antibiotic use is a risk factor for development of inflammatory bowel diseases (IBDs). IBDs are characterized by a damaged mucus layer, which does not properly separate the host intestinal epithelium from the microbiota. Here, we hypothesized that antibiotics might affect the integrity of the mucus barrier. By systematically determining the effects of different antibiotics on mucus layer penetrability we found that oral antibiotic treatment led to breakdown of the mucus barrier and penetration of bacteria into the mucus layer. Using fecal microbiota transplant, RNA sequencing followed by machine learning and ex vivo mucus secretion measurements, we determined that antibiotic treatment induces ER stress and inhibits colonic mucus secretion in a microbiota-independent manner. This mucus secretion flaw led to penetration of bacteria into the colonic mucus layer, translocation of microbial antigens into circulation and exacerbation of ulcerations in a mouse model of IBD. Thus, antibiotic use might predispose to development of intestinal inflammation by impeding mucus production.
Project description:Antibiotic use is a risk factor for development of inflammatory bowel diseases (IBDs). IBDs are characterized by a damaged mucus layer, which does not properly separate the host intestinal epithelium from the microbiota. Here, we hypothesized that antibiotics might affect the integrity of the mucus barrier. By systematically determining the effects of different antibiotics on mucus layer penetrability we found that oral antibiotic treatment led to breakdown of the mucus barrier and penetration of bacteria into the mucus layer. Using fecal microbiota transplant, RNA sequencing followed by machine learning and ex vivo mucus secretion measurements, we determined that antibiotic treatment induces ER stress and inhibits colonic mucus secretion in a microbiota-independent manner. This mucus secretion flaw led to penetration of bacteria into the colonic mucus layer, translocation of microbial antigens into circulation and exacerbation of ulcerations in a mouse model of IBD. Thus, antibiotic use might predispose to development of intestinal inflammation by impeding mucus production.
Project description:In previous studies, we employed multiple behavior assays, including propensity to feed, simulated trawl capture and escape response, to prove the presence of bold and shy personality in olive flounder. However, the molecular mechanism of the different personality has not been elucidated. In the present study, the transcriptomic profiles of the hindbrain from flounder with distinct personalities were compared. A total of 144 differently expressed genes were identified, including 74 up-regulated and 70 downregulated genes. Genes involved in hypoxia stress were detected in SP flounder, accompanied by down-regulation of ribosomal RNA synthesis. In addition, genes related to calcium signaling pathway, including endothelin, b-Fos, c-Fos and c-Jun were up-regulated in SP flounder. Furthermore, personality-related genes, including UI, CCK, c-Fos showed a significantly higher level in SP flounder compared with BP flounder. GO enrichment analysis indicated that the GO categories “the tight junction pathway” and “lipid transport or localization pathway” are enriched in SP flounder, suggesting that the central nervous system homeostasis would be compromised. Finally, a simple and scalable DNA methylation profiling allows for methylation analysis for different genes. The results found that part of gene expression is negatively related to methylation of promoter. Altogether, identification of the related genes in flounder with different personalities will shed new light to improve critical industry issues related to stress and increase aquaculture production of flounder.