Project description:Here, we report the draft genome sequence of a marine bacterium, Mycolicibacterium sp. strain 018/SC-01/001, isolated from the marine sponge Iotrochota sp. collected from the Singapore Strait. The analysis of the bacterial genome using the bioinformatics tool antiSMASH 4.0.2 revealed the presence of a number of unique natural product biosynthetic pathways.
Project description:RNA-seq of Mycobacteriophage Island3 infection of Mycolicibacterium smegmatis mc2155, Mycolicibacterium smegmatis mc2155(Butters), and Mycolicibacterium smegmatis mc2155(Buttersgp57r) to assess the impact of Butters lysogen and specifically Buttersgp57r on transcript levels of island3 during infection.
Project description:We identified a novel transcription factor, MsoA, in response to oxidative stress in Mycolicibacterium smegmatis. We hope to discover the regulatory network and target genes of transcription factor msoA by transcriptome sequencing of wild-type and msoA mutants, so as to help us further elucidate the molecular mechanism of msoA involved in regulation of Mycolicibacterium oxidation.
Project description:MLS000408882-01 and MLS000573813-01 were identified through a cell based screen that measures the reactivation of an epigenetically silenced transgene. MLS000408882-01 and MLS000573813-01 shows selectivity for cancer vs. normal cells affecting both transcriptional patterns and cell viability in a cancer specific manner.
Project description:BACKGROUND: Preclinical studies have demonstrated that pharmacological mobilization and recruitment of endogenous bone marrow stem cells and immunoregulatory cells by a combination of plerixafor and low-dose tacrolimus (MRG-001) improves wound healing, promotes tissue regeneration and prevents allograft rejection. This first‐in‐human phase I dose‐escalation study evaluates the safety, tolerability, pharmacokinetics and pharmacodynamics of MRG-001, a novel fixed-dose combination drug. METHODS: In this Phase 1, double‐blind, randomized, placebo-controlled study, multiple ascending dose (MAD) cohorts are randomized to receive MRG-001 containing up to 0.02 mL/kg (plerixafor 24 mg/mL and tacrolimus 0.5 mg/mL) or saline placebo, subcutaneously every other day (SC, QAD) for 5 days (ClinicalTrials.gov: NCT04646603)The primary outcome is safety and tolerability. Safety and functional assessments are performed throughout the study. Blood samples are collected to evaluate systemic exposure. Fluorescence-activated cell sorting analysis and RNA expression of peripheral blood mononuclear cells (PBMCs) are used to evaluate the pharmacodynamics. RESULTS: Fourteen subjects received MRG-001 and 7 received a placebo. MRG-001 is safe and well-tolerated over the selected dose range. No deaths or severe adverse events are reported. There are no clinically significant laboratory changes after MRG-001 administration, apart from the predicted generalized leukocytosis. The intermediate dose group (0.01 mL/kg) showed the most significant white blood cell mobilization over time and increased by 2-4 fold from baseline and returned to baseline levels prior to the next injection. Circulating immune cells including FOXP3+ regulatory T cells and hematopoietic stem cells (CD45IntCD34+) increased significantly after MRG-001 injection. PBMC RNA sequencing and gene set enrichment analysis revealeds 31 down-regulated pathways in the intermediate dose MRG-001 group compared to no changes in the placebo group. CONCLUSION: MRG-001 is safe and well-tolerated across the full dose ranges tested. MRG-001 may be a clinically useful therapy for immunoregulation and tissue regeneration. A Phase II trial to treat severely and critically ill COVID-19 patients with MRG-001 has been initiated (NCT04646603) and a second phase II trial will explore the potential of MRG-001 to accelerate wound healing (NCT05844527),
Project description:We examined the effects of ICG-001 on gene expression in Mel202 uveal melanoma (UM) cells. ICG-001 exerted strong antiproliferative activity against UM cells, leading to cell cycle arrest, apoptosis, and inhibition of migration. Global gene expression profiling revealed strong suppression of genes associated with cell cycle proliferation, DNA replication, and G1/S transition. Gene set enrichment analysis revealed that ICG-001 suppressed Wnt, mTOR, and MAPK signaling. Strikingly, ICG-001 suppressed the expression of genes associated with UM aggressiveness, including CDH1, CITED1, EMP1, EMP3, SDCBP, and SPARC. Notably, the transcriptomic footprint of ICG-001, when applied to a UM patient dataset, was associated with better clinical outcome. Lastly, ICG-001 exerted anticancer activity against a UM tumor xenograft in mice.