Project description:The Ashkenazi Jewish population has long been considered a genetic isolate and presumed to have the genetic signatures of founder effects and isolation. We genotyped a large cohort of Ashkenazi Jews and analyzed their genetic structure compared to other worldwide populations.
Project description:The Ashkenazi Jewish population has long been considered a genetic isolate and presumed to have the genetic signatures of founder effects and isolation. We genotyped a large cohort of Ashkenazi Jews and analyzed their genetic structure compared to other worldwide populations. We genotyped 471 normal control Ashkenazi Jewish individuals with the Affymetrix 6.0 array and analyzed their genetic structure relative to other Europe and worldwide populations. We measured heterozygosity, linkage disequilibrium, identity-by-descent and used extended haplotype tests of positive selection.
Project description:Schizophrenia is a severe psychiatric illness that affects ~1% of the population and has a strong genetic underpinning. Recently, genome wide analysis of copy number variation (CNV) has implicated rare and de novo events as important in schizophrenia. Here we report a genome-wide analysis of 245 schizophrenia cases and 490 controls, all of Ashkenazi Jewish descent. Since many studies have found an excess burden of large, rare deletions in cases, we limited our analysis to deletions over 500 kb in size. We observed seven large, rare deletions in cases with 57% of these being de novo. We focused on one 836 kb de novo deletion at chromosome 3q29 that falls within a 1.3–1.6 Mb deletion previously identified in children with intellectual disability (ID) and autism, as increasing evidence suggests an overlap of specific rare CNVs between autism and schizophrenia. By combining our data with prior CNV studies of schizophrenia and analysis of the data of the Genetic Association Information Network (GAIN), we identified six 3q29 deletions among 7,545 schizophrenic subjects and one among 39,748 controls, resulting in a statistically significant association with schizophrenia (p = 0.02) and an odds ratio estimate of 17 (95% CI: 1.36–1198.4). Moreover, this 3q29 deletion region contains two linkage peaks from prior schizophrenia family studies, and the minimal deletion interval implicates 20 annotated genes, including PAK2 and DLG1, both paralogous to X-linked ID genes and now strong candidates for schizophrenia susceptibility. Copy Number alanysis was performed on 245 cases and 490 controls of Ashkenazi Jewish descent. Samples were analyzed for deletions greater than 500 kb, with 20 or more snps in the interval. Three algorithms were used for analysis, GADA, GLAD and BEAST. The reference was created by using all samples processed here as the reference.
Project description:Introduction Mammographic density (MD), as assessed from film screen mammograms, is determined by the relative content of adipose, connective and epithelial tissue in the female breast. In epidemiological studies, a high percentage of MD confers a four to six fold risk elevation of developing breast cancer, even after adjustment for other known breast cancer risk factors. However, the biologic correlates of density are little known. Methods Gene expression analysis using whole genome arrays was performed on breast biopsies from 143 women; 79 women with no malignancy (healthy women) and 64 newly diagnosed breast cancer patients, both included from mammographic centres. Percent MD was determined using a previously validated, computerized method on scanned mammograms. Significance analysis of microarrays (SAM) was performed to identify genes influencing MD and generalized regression models were used to assess the independent contribution from different variables to MD. Results SAM-analysis identified 24 genes differentially expressed between samples from breasts with high and low MD. These genes included three uridine 5'-diphospho-glucuronosyltransferase (UGT) genes and the oestrogen receptor gene (ESR1). These genes were down-regulated in samples with high MD compared to those with low MD. The UGT gene products, which are known to inactivate oestrogen metabolites, were also down-regulated in tumour samples compared to samples from healthy individuals. Several single nucleotide polymorphisms (SNPs) in the UGT genes associated with the expression of UGT and other genes in their vicinity were identified. Conclusions Three UGT enzymes were lower expressed both in breast tissue biopsies from healthy women with high MD and in biopsies from newly diagnosed breast cancers. The association was strongest among young women and women using hormonal therapy. UGT2B10 predicts MD independently of age, hormone therapy and parity. Our results indicate that down-regulation of UGT genes in women exposed to female sex hormones is associated with high MD and might increase the risk of breast cancer. Gene expression analysis of breast biopsies from 143 women, 79 non-cancer (healthy women with no cancer who had a mammogram taken) and 64 breast cancer.
Project description:Schizophrenia is a severe psychiatric illness that affects ~1% of the population and has a strong genetic underpinning. Recently, genome wide analysis of copy number variation (CNV) has implicated rare and de novo events as important in schizophrenia. Here we report a genome-wide analysis of 245 schizophrenia cases and 490 controls, all of Ashkenazi Jewish descent. Since many studies have found an excess burden of large, rare deletions in cases, we limited our analysis to deletions over 500 kb in size. We observed seven large, rare deletions in cases with 57% of these being de novo. We focused on one 836 kb de novo deletion at chromosome 3q29 that falls within a 1.3–1.6 Mb deletion previously identified in children with intellectual disability (ID) and autism, as increasing evidence suggests an overlap of specific rare CNVs between autism and schizophrenia. By combining our data with prior CNV studies of schizophrenia and analysis of the data of the Genetic Association Information Network (GAIN), we identified six 3q29 deletions among 7,545 schizophrenic subjects and one among 39,748 controls, resulting in a statistically significant association with schizophrenia (p = 0.02) and an odds ratio estimate of 17 (95% CI: 1.36–1198.4). Moreover, this 3q29 deletion region contains two linkage peaks from prior schizophrenia family studies, and the minimal deletion interval implicates 20 annotated genes, including PAK2 and DLG1, both paralogous to X-linked ID genes and now strong candidates for schizophrenia susceptibility.
Project description:Introduction Mammographic density (MD), as assessed from film screen mammograms, is determined by the relative content of adipose, connective and epithelial tissue in the female breast. In epidemiological studies, a high percentage of MD confers a four to six fold risk elevation of developing breast cancer, even after adjustment for other known breast cancer risk factors. However, the biologic correlates of density are little known. Methods Gene expression analysis using whole genome arrays was performed on breast biopsies from 143 women; 79 women with no malignancy (healthy women) and 64 newly diagnosed breast cancer patients, both included from mammographic centres. Percent MD was determined using a previously validated, computerized method on scanned mammograms. Significance analysis of microarrays (SAM) was performed to identify genes influencing MD and generalized regression models were used to assess the independent contribution from different variables to MD. Results SAM-analysis identified 24 genes differentially expressed between samples from breasts with high and low MD. These genes included three uridine 5'-diphospho-glucuronosyltransferase (UGT) genes and the oestrogen receptor gene (ESR1). These genes were down-regulated in samples with high MD compared to those with low MD. The UGT gene products, which are known to inactivate oestrogen metabolites, were also down-regulated in tumour samples compared to samples from healthy individuals. Several single nucleotide polymorphisms (SNPs) in the UGT genes associated with the expression of UGT and other genes in their vicinity were identified. Conclusions Three UGT enzymes were lower expressed both in breast tissue biopsies from healthy women with high MD and in biopsies from newly diagnosed breast cancers. The association was strongest among young women and women using hormonal therapy. UGT2B10 predicts MD independently of age, hormone therapy and parity. Our results indicate that down-regulation of UGT genes in women exposed to female sex hormones is associated with high MD and might increase the risk of breast cancer.
Project description:IntroductionPercent mammographic density (PMD) adjusted for age and body mass index is one of the strongest risk factors for breast cancer and is known to be approximately 60% heritable. Here we report a finding of an association between genetic ancestry and adjusted PMD.MethodsWe selected self-identified Caucasian women in the California Pacific Medical Center Research Institute Cohort whose screening mammograms placed them in the top or bottom quintiles of age-adjusted and body mass index-adjusted PMD. Our final dataset included 474 women with the highest adjusted PMD and 469 with the lowest genotyped on the Illumina 1 M platform. Principal component analysis (PCA) and identity-by-descent analyses allowed us to infer the women's genetic ancestry and correlate it with adjusted PMD.ResultsWomen of Ashkenazi Jewish ancestry, as defined by the first principal component of PCA and identity-by-descent analyses, represented approximately 15% of the sample. Ashkenazi Jewish ancestry, defined by the first principal component of PCA, was associated with higher adjusted PMD (P = 0.004). Using multivariate regression to adjust for epidemiologic factors associated with PMD, including age at parity and use of postmenopausal hormone therapy, did not attenuate the association.ConclusionsWomen of Ashkenazi Jewish ancestry, based on genetic analysis, are more likely to have high age-adjusted and body mass index-adjusted PMD. Ashkenazi Jews may have a unique set of genetic variants or environmental risk factors that increase mammographic density.
Project description:Multiple family members with cancer or individuals with multiple primary cancers are indicative of potential genetic etiology1. Germline mutations in TP53 cause a rare high penetrance cancer syndrome, Li Fraumeni Syndrome (LFS)2. We identified a TP53 tetramerization domain (TD) missense mutation c.1000G>C;p.G334R, in a family with LFS-associated cancers. Twenty-one additional probands were identified, and available tumors showed biallelic somatic inactivation of TP53. The majority of families were of Ashkenazi Jewish descent, and the TP53 c.1000G>C allele was found on a commonly inherited haplotype. While classical p53 target gene activation was maintained in p.G334R mutant cell lines treated with Nutlin-3a, a subset of p53 target genes, including PCLO, PLTP, PLXNB3 and LCN15, showed defective transactivation. Structural analysis demonstrated thermal instability of the mutant TD, and the G334R mutant protein showed increased preponderance of mutant conformation protein. TP53 c.1000G>C;p.G334R is a rare AJ-predominant mutation associated with low penetrance Li-Fraumeni Syndrome