Project description:Peanut (Arachis hypogaea L.) is considered as a moderately salt-sensitive species and thus soil salinity can be a limiting factor for peanut cultivation. To gain insights into peanut plant physiology in response to salt stress and alleviation, we comprehensively characterized leaf relative electrolyte leakage (REC), photosynthesis, leaf transpiration, and metabolism of plants under salt stress and plants that were subjected to salt stress followed by salt alleviation period. As expected, we found that REC levels were higher when plants were subjected to salt stress compared with the untreated plants. However, in contrast to expectations, REC was even higher compared with salt treated plants when plants were transferred from salt stress to standard conditions. To decipher REC variation in response to salt stress, especial during the recovery, metabolite, and transcript variations were analyzed by GC/MS and RNA-seq method, respectively. Ninety two metabolites, among total 391 metabolites identified, varied in response to salt and 42 metabolites responded to recovery specially. Transcriptomics data showed 1,742 in shoots and 3,281 in roots transcript varied in response to salt stress and 372 in shoots and 1,386 transcripts in roots responded specifically to recovery, but not salt stress. Finally, 95 transcripts and 1 metabolite are indicated as candidates involved in REC, photosynthesis, transpiration, and Na+ accumulation variation were revealed by using the principal component analysis (PCA) and correlation analysis. This study provides valuable information on peanut response to salt stress and recovery and may inspire further study to improve salt tolerance in peanut germplasm innovation.
Project description:Peanut is one of the most important cash crops with high quality oil, high protein content, and many other nutritional elements, and grown globally. Cultivated peanut (Arachis hypogaea L.) is allotetraploid with a narrow genetic base, and its genetics and molecular mechanisms controlling the agronomic traits are poorly understood. The array SNP data was used for revaling of key candidate loci and genes associated with important agronomic traits in peanut
Project description:In this study, we used RNA-seq to obtain and compare transcriptomic profiles of a resistant genotype J11 in pre-harvest seeds, with A. flavus inoculation at the whole-genome level. The TMT method was also implemented to help further understand the molecular mechanism of peanut resistance to A. flavus invasion at proteome level. Meanwhile, we conducted a thorough research on a chitinase and a NBS-LRR gene, which were found in our data. This study is our first step towards a comprehensive genome-scale platform for developing Aspergillus resistant peanut cultivars through genetic engineering.
Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.
Project description:Peanut-responsive T cells from peanut allergic subjects were identified and selected based on CD154 expression after stimulation of peripheral blood mononuclear cells with crude peanut extract for 18h. As controls, polyclonally activated CD4+ T cells from peanut allergic subjects were selected. Additional controls included CD4+CD25+CD127- Tregs from peanut allergic or healthy controls. Single cells were obtained using the C1 system from Fluidigm, and a barcoded library constructed. Sequencing (Illumina) was performed using 100 nt paired end reads. Data on a total of 431 cells was available. The goal of the study was to understand the heterogeneity of the peanut-specific T cell response.