Project description:Verticillium dahliae Kleb., a soil-borne fungus that colonizes vascular tissues, induces wilting, chlorosis and early senescence in potato. Difference in senescence timing found in two diploid potato clones, 07506-01 and 12120-03, was studied and genetic variation in response to V. dahliae infection was identified as a causal factor. The clone, 07506-01, was infected with V. dahliae but did not develop symptoms, indicating tolerance to the pathogen. The other diploid clone, 12120-03 had low levels of pathogen with infection and moderate symptoms indicating partial resistance. 07506-01 was found to carry two susceptible alleles of the Ve2 gene and 12120-03 carried one Ve2 resistant and one susceptible allele. Infected leaves of the two clones were compared using gene expression profiling with the Potato Oligonucleotide Chip Initiative (POCI) microrarray. The results provide further evidence for differences in response of the two clones to infection with V. dahliae. Chlorophyll biosynthesis was higher in the tolerant 07506-01 compared to partially resistant 12120-03. On the other hand, expression of fungal defense genes, Ve resistance genes and defense phytohormone biosynthetic enzyme genes was decreased in 07506-01 compared to 12120-03 suggesting defense responses were suppressed in tolerance compared to resistance. Transcription factor gene expression differences pointed to the WRKY family as potential regulators of V. dahliae responses in potato. Two-color microarray comparison of two clones, three biological replicates of each clone, one dye swap technical replicate
Project description:Verticillium dahliae Kleb., a soil-borne fungus that colonizes vascular tissues, induces wilting, chlorosis and early senescence in potato. Difference in senescence timing found in two diploid potato clones, 07506-01 and 12120-03, was studied and genetic variation in response to V. dahliae infection was identified as a causal factor. The clone, 07506-01, was infected with V. dahliae but did not develop symptoms, indicating tolerance to the pathogen. The other diploid clone, 12120-03 had low levels of pathogen with infection and moderate symptoms indicating partial resistance. 07506-01 was found to carry two susceptible alleles of the Ve2 gene and 12120-03 carried one Ve2 resistant and one susceptible allele. Infected leaves of the two clones were compared using gene expression profiling with the Potato Oligonucleotide Chip Initiative (POCI) microrarray. The results provide further evidence for differences in response of the two clones to infection with V. dahliae. Chlorophyll biosynthesis was higher in the tolerant 07506-01 compared to partially resistant 12120-03. On the other hand, expression of fungal defense genes, Ve resistance genes and defense phytohormone biosynthetic enzyme genes was decreased in 07506-01 compared to 12120-03 suggesting defense responses were suppressed in tolerance compared to resistance. Transcription factor gene expression differences pointed to the WRKY family as potential regulators of V. dahliae responses in potato.
Project description:Two medulloblastoma cell lines (ONS-76 and HDMB-03) were grown in 3D hyaluronan hydrogels for three weeks. We observed nodules forming showing different behavior and wanted to evaluate if these different nodules (slow vs fast vs non-growing, migrating and invading cells) are also characterised by different gene expression patterns. We performed this experiment on a SHH (ONS-76) and on a group 3 MB (HDMB-03) cell line to compare if certain subpopulations would be unique for the subgroups.
Project description:Tumor core biopsies were obtained at baseline and after brief-exposure to single-agent trastuzumab from patients enrolled on the 03-311 trial. Gene expression profiling was conducted on these tumor biopsies to identify signatures of response to preoperative therapy. This study was initiated to identify biomarkers of response to preoperative trastuzumab-conotaining therapy. We performed transcriptional profiling of patient tumor biopsies obtained at baseline and post brief-exposure to trastuzumab to test the hypothesis that transcriptional changes upon brief-exposure to therapy can provide an early readout of subsequent response.