Project description:Mice deficient in MBD2 (Mbd2-/-) were treated with 2% dextran sulfate sodium or normal drinking water for 6 continuous days. A single cell suspension of colon lamina propria and epithelium was isolated, with monocytes (CD11b+ Ly6CHi, MHC-II+/-), macrophages (CD11b+ Ly6C-MHC-II+), cDC2s (CD11b- CD11c+ CD103+) and epithelial cells (CD45- EpCAM+) purified by FACS. Methyl-CpG-binding domain-2 (Mbd2) acts as an epigenetic regulator of gene expression, by linking DNA methylation to repressive chromatin structure. Although Mbd2 is widely expressed in gastrointestinal immune cells and is implicated in regulating intestinal cancer and anti-helminth responses, its role in controlling colitis has yet to be defined. Indeed, epigenetic control of gene expression in cells that regulate intestinal immunity is generally poorly understood, even though such mechanisms may explain the inability of standard genetic approaches to pinpoint the causes of conditions like inflammatory bowel disease. In this study we demonstrate a vital role for Mbd2 in regulating murine colonic inflammation. Mbd2-/- mice displayed dramatically worse pathology than wild type controls during dextran sulphate sodium (DSS) induced colitis, with increased inflammatory (IL-1β+) monocytes. Profiling of mRNA from innate immune and epithelial cell (EC) populations suggested that Mbd2 suppresses inflammation and pathology via control of innate-epithelial cell crosstalk and T cell recruitment. Consequently, restriction of Mbd2 deficiency to CD11c+ dendritic cells and macrophages, or to ECs, resulted in increased DSS colitis severity. Our identification of this dual role for Mbd2 in regulating the inflammatory capacity of both CD11c+ cells and ECs highlights how epigenetic control mechanisms may limit intestinal inflammatory responses.
Project description:Mice deficient in MBD2 (Mbd2-/-) were treated with 2% dextran sulfate sodium or normal drinking water for 6 continuous days. A single cell suspension of colon lamina propria and epithelium was isolated, with monocytes (CD11b+ Ly6CHi, MHC-II+/-), macrophages (CD11b+ Ly6C-MHC-II+), cDC2s (CD11b- CD11c+ CD103+) and epithelial cells (CD45- EpCAM+) purified by FACS. Methyl-CpG-binding domain-2 (Mbd2) acts as an epigenetic regulator of gene expression, by linking DNA methylation to repressive chromatin structure. Although Mbd2 is widely expressed in gastrointestinal immune cells and is implicated in regulating intestinal cancer and anti-helminth responses, its role in controlling colitis has yet to be defined. Indeed, epigenetic control of gene expression in cells that regulate intestinal immunity is generally poorly understood, even though such mechanisms may explain the inability of standard genetic approaches to pinpoint the causes of conditions like inflammatory bowel disease. In this study we demonstrate a vital role for Mbd2 in regulating murine colonic inflammation. Mbd2-/- mice displayed dramatically worse pathology than wild type controls during dextran sulphate sodium (DSS) induced colitis, with increased inflammatory (IL-1β+) monocytes. Profiling of mRNA from innate immune and epithelial cell (EC) populations suggested that Mbd2 suppresses inflammation and pathology via control of innate-epithelial cell crosstalk and T cell recruitment. Consequently, restriction of Mbd2 deficiency to CD11c+ dendritic cells and macrophages, or to ECs, resulted in increased DSS colitis severity. Our identification of this dual role for Mbd2 in regulating the inflammatory capacity of both CD11c+ cells and ECs highlights how epigenetic control mechanisms may limit intestinal inflammatory responses.
Project description:The Methyl-CpG-Binding Domain Protein family has been implicated in neurodevelopmental disorders. The Methyl-CpG-binding domain 2 (Mbd2) binds methylated DNA and was shown to play an important role in cancer and immunity. Some evidence linked this protein to neurodevelopment. However, its exact role in neurodevelopment and brain function is mostly unknown. Here we show that Mbd2-deficiency in mice (Mbd2-/-) results in deficits in cognitive, social and emotional functions. Mbd2 binds regulatory DNA regions of neuronal genes in the hippocampus and loss of Mbd2 alters the expression of hundreds of genes with a robust down-regulation of neuronal gene pathways. Further, a genome-wide DNA methylation analysis found an altered DNA methylation pattern in regulatory DNA regions of neuronal genes in Mbd2-/- mice. Differentially expressed genes significantly overlap with gene-expression changes observed in brain of Autism Spectrum Disorder (ASD) individuals. Notably, down-regulated genes are significantly enriched for human ortholog ASD risk-genes. Observed hippocampal morphological abnormalities were similar to those found in individuals with ASD and ASD rodent models. Mbd2 knockdown partially recapitulates the behavioral phenotypes observed in Mbd2-/- mice. These findings suggest Mbd2 is a novel epigenetic regulator of genes that are associated with ASD in humans. Mbd2 loss causes behavioral alterations that resemble those found in ASD patients.
Project description:The Methyl-CpG-Binding Domain Protein family has been implicated in neurodevelopmental disorders. The Methyl-CpG-binding domain 2 (Mbd2) binds methylated DNA and was shown to play an important role in cancer and immunity. Some evidence linked this protein to neurodevelopment. However, its exact role in neurodevelopment and brain function is mostly unknown. Here we show that Mbd2-deficiency in mice (Mbd2-/-) results in deficits in cognitive, social and emotional functions. Mbd2 binds regulatory DNA regions of neuronal genes in the hippocampus and loss of Mbd2 alters the expression of hundreds of genes with a robust down-regulation of neuronal gene pathways. Further, a genome-wide DNA methylation analysis found an altered DNA methylation pattern in regulatory DNA regions of neuronal genes in Mbd2-/- mice. Differentially expressed genes significantly overlap with gene-expression changes observed in brain of Autism Spectrum Disorder (ASD) individuals. Notably, down-regulated genes are significantly enriched for human ortholog ASD risk-genes. Observed hippocampal morphological abnormalities were similar to those found in individuals with ASD and ASD rodent models. Mbd2 knockdown partially recapitulates the behavioral phenotypes observed in Mbd2-/- mice. These findings suggest Mbd2 is a novel epigenetic regulator of genes that are associated with ASD in humans. Mbd2 loss causes behavioral alterations that resemble those found in ASD patients.
Project description:The Methyl-CpG-Binding Domain Protein family has been implicated in neurodevelopmental disorders. The Methyl-CpG-binding domain 2 (Mbd2) binds methylated DNA and was shown to play an important role in cancer and immunity. Some evidence linked this protein to neurodevelopment. However, its exact role in neurodevelopment and brain function is mostly unknown. Here we show that Mbd2-deficiency in mice (Mbd2-/-) results in deficits in cognitive, social and emotional functions. Mbd2 binds regulatory DNA regions of neuronal genes in the hippocampus and loss of Mbd2 alters the expression of hundreds of genes with a robust down-regulation of neuronal gene pathways. Further, a genome-wide DNA methylation analysis found an altered DNA methylation pattern in regulatory DNA regions of neuronal genes in Mbd2-/- mice. Differentially expressed genes significantly overlap with gene-expression changes observed in brain of Autism Spectrum Disorder (ASD) individuals. Notably, down-regulated genes are significantly enriched for human ortholog ASD risk-genes. Observed hippocampal morphological abnormalities were similar to those found in individuals with ASD and ASD rodent models. Mbd2 knockdown partially recapitulates the behavioral phenotypes observed in Mbd2-/- mice. These findings suggest Mbd2 is a novel epigenetic regulator of genes that are associated with ASD in humans. Mbd2 loss causes behavioral alterations that resemble those found in ASD patients.
Project description:Cancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour suppressor genes The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the meditation of gene silencing by interaction with histone deacetylases and histone methyltransferases. However the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD may proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in promoting DNA methylation. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2-/- mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2-/- cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer, highlighting a potential active role of MBD2 in promoting cancer specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 reveals that MBD2 associates with DNA methyltransferase (DNMT) enzymes 1 and 3A. Together our results demonstrate that MBD2 plays a critical role in “rewriting” the cancer methylome at specific regulatory regions.
Project description:Cancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour suppressor genes The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the meditation of gene silencing by interaction with histone deacetylases and histone methyltransferases. However the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD may proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in promoting DNA methylation. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2-/- mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2-/- cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer, highlighting a potential active role of MBD2 in promoting cancer specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 reveals that MBD2 associates with DNA methyltransferase (DNMT) enzymes 1 and 3A. Together our results demonstrate that MBD2 plays a critical role in “rewriting” the cancer methylome at specific regulatory regions.
Project description:Cancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour suppressor genes The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the meditation of gene silencing by interaction with histone deacetylases and histone methyltransferases. However the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD may proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in promoting DNA methylation. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2-/- mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2-/- cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer, highlighting a potential active role of MBD2 in promoting cancer specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 reveals that MBD2 associates with DNA methyltransferase (DNMT) enzymes 1 and 3A. Together our results demonstrate that MBD2 plays a critical role in â??rewritingâ?? the cancer methylome at specific regulatory regions. LNCaP prostate cancer cell line clones with reduced MBD2 expression were establised by using shRNA to MBD2 and scrambled control clones were established with scrambled control shRNA. To interrogate methylation changes induced by MBD2 knock-down we profiled three stably transfected scrambled control clones and three MBD2 knockdown clones on Illumina HumanMethylation450K arrays. Differential methylation analysis was carried out to identified CpG sites hypo-/hyper-methylated as a result of MBD2 knockdown.