Project description:To study feasibility of gene expression profiling from FFPE tissues using NanoString nCounter platform, we designed a pilot study utilizing samples from prostate cancer cohort. We selected samples from large-scale epidemiologic studies and clinical trials representative of a wide variety of fixation times, block ages and block storage conditions. five paired tumor and adjacent normal prostate tissue speciemens with technical replicates
Project description:microRNA expression profiling of Stage I Lung Adenocarcinoma and non-tumor adjacent tissues. The Nanostring nCounter Human miRNA Expression Assay Kit version 1.6 (Nanostring, Seattle, WA) was used to obtain microRNA profiles of tumor and adjacent non-tumor tissues excised from Stage I Lung Adenocarcinoma patients. Total cellular RNA was extracted from tumor and matching adjacent non-tumor lung using miRNA Kit (QIAGEN), according to the manufacturer’s instructions, and 100 ng were used for hybridization to Nanostring nCounter Human miRNA Expression Assay Kit version 1.6 (Nanostring, Seattle, WA) following processing protocol recommended by the manufacturer.
Project description:We profiled human DLBCL tumor samples (FF and FFPE matched pairs) to identify the transcripts which are less prone to degradation in FFPE Keywords: DLBCL FF FFPE
Project description:Accessing the proteome of formalin fixed, paraffin-embedded (FFPE) tissue could lead to discovery of new biomarkers and development of clinically useful assays. A critical step to realizing this potential is developing a simple and reproducible method to obtain proteomic profiles from FFPE tissue. An objective of this work is to develop and optimize a method to obtain proteomic profiles from FFPE breast tissue using a protocol commonly applied in pathology laboratories. The outcome is a method that incorporates steps used for immunohistochemical analyses of FFPE tissue that results in highly reproducible proteomic profiles. Implementing this assay with normal breast tissue and breast tumor tissue produced proteome profiles that reproducibly demonstrate substantial differences between normal vs. tumor tissue.
Project description:Background: The KRAS gene is mutated in about 40% of colorectal cancer (CRC) cases, which has been clinically validated as a predictive mutational marker of intrinsic resistatnce to anti-EGFR inhibitor (EGFRi) therapy. Since nearly 60% of patients with a wild type KRAS fail to respond to EGFRi treatment, there is a need to develop more reliable molecular signatures to better predict response. Here we address the challenge of adapting a gene expression signature predictive of RAS pathway activation, created using fresh frozen (FF) tissues, for use with more widely available formalin fixed paraffin-embedded (FFPE) tissues. Methods: In this study, we evaluated the translation of an 18-gene RAS pathway signature score from FF to FFPE in 54 CRC cases, using a head-to-head comparison of five technology platforms. FFPE-based technologies included the Affymetrix GeneChip (Affy), NanoString nCounter(NanoS), Illumina whole genome RNASeq (RNA-Acc), Illumina targeted RNASeq(t-RNA), and Illumina stranded Total RNA-rRNA-depletion (rRNA). Results: Using Affy_FF as the gold standard, initial analysis of the 18-gene RAS scores on all 54 samples shows varying pairwise Spearman correlations, with (1) Affy_FFPE(r=0.233, p=0.090); (2) NanoS_FFPE(r=0.608, p<0.0001); (3) RNA-Acc_FFPE(r=0.175, p=0.21); (4) t-RNA_FFPE (r=-0.237, p=0.085); and (5) t-RNA (r=-0.012, p=0.93). These results suggest that only NanoString has successful FF to FFPE translation. The subsequent removal of identified problematic samples (n=15) and gene (n=2) further improves the correlations of Affy_FF with three of the five technologies: Affy_FFPE (r=0.672, p<0.0001); NanoS_FFPE (r=0.738, p<0.0001); and RNA-Acc_FFPE (r=0.483, p=0.002). Conclusions: Of the five technology platforms tested, NanoString technology provides a more faithful translation of the RAS pathway gene expression signature from FF to FFPE than the Affymetrix GeneChip and multiple RNASeq technologies. Moreover, NanoString was the most forgiving technology in the analysis of samples with presumably poor RNA quality. Using this approach, the RAS signature score may now be reasonably applied to FFPE clinical samples.
Project description:Background: The KRAS gene is mutated in about 40% of colorectal cancer (CRC) cases, which has been clinically validated as a predictive mutational marker of intrinsic resistatnce to anti-EGFR inhibitor (EGFRi) therapy. Since nearly 60% of patients with a wild type KRAS fail to respond to EGFRi treatment, there is a need to develop more reliable molecular signatures to better predict response. Here we address the challenge of adapting a gene expression signature predictive of RAS pathway activation, created using fresh frozen (FF) tissues, for use with more widely available formalin fixed paraffin-embedded (FFPE) tissues. Methods: In this study, we evaluated the translation of an 18-gene RAS pathway signature score from FF to FFPE in 54 CRC cases, using a head-to-head comparison of five technology platforms. FFPE-based technologies included the Affymetrix GeneChip (Affy), NanoString nCounter(NanoS), Illumina whole genome RNASeq (RNA-Acc), Illumina targeted RNASeq(t-RNA), and Illumina stranded Total RNA-rRNA-depletion (rRNA). Results: Using Affy_FF as the gold standard, initial analysis of the 18-gene RAS scores on all 54 samples shows varying pairwise Spearman correlations, with (1) Affy_FFPE(r=0.233, p=0.090); (2) NanoS_FFPE(r=0.608, p<0.0001); (3) RNA-Acc_FFPE(r=0.175, p=0.21); (4) t-RNA_FFPE (r=-0.237, p=0.085); and (5) t-RNA (r=-0.012, p=0.93). These results suggest that only NanoString has successful FF to FFPE translation. The subsequent removal of identified problematic samples (n=15) and gene (n=2) further improves the correlations of Affy_FF with three of the five technologies: Affy_FFPE (r=0.672, p<0.0001); NanoS_FFPE (r=0.738, p<0.0001); and RNA-Acc_FFPE (r=0.483, p=0.002). Conclusions: Of the five technology platforms tested, NanoString technology provides a more faithful translation of the RAS pathway gene expression signature from FF to FFPE than the Affymetrix GeneChip and multiple RNASeq technologies. Moreover, NanoString was the most forgiving technology in the analysis of samples with presumably poor RNA quality. Using this approach, the RAS signature score may now be reasonably applied to FFPE clinical samples.
Project description:This work highlights similarities and differences between three platforms (next-generation sequencing, microarray and NanoString) for detecting miRNAs and compares their strengths and weaknesses. miRNA expression profiles were determined in Hepatoblastoma FFPE samples using a NanoString platform.