Project description:The study investigated the impact of environment on the composition of the gut microbiota and mucosal immune development and function at gut surfaces in early and adult life. Piglets of similar genotype were reared in indoor and outdoor environments and in an experimental isolator facility. Mucosa-adherent microbial diversity in the pig ileum was characterized by sequence analysis of 16S rRNA gene libraries. Host-specific gene responses in gut ileal tissues to differences in microbial composition were investigated using Affymetrix microarray technology and Real-time PCR.
Project description:Exposure to high-dose radiation causes life-threatening serious intestinal damage. Histological analysis is the most accurate method for judging the extent of intestinal damage after death. However, it is difficult to predict the extent of intestinal damage to body samples. Here we focused on extracellular microRNAs (miRNAs) released from cells and investigated miRNA species that increased or decreased in serum and feces using a radiation-induced intestinal injury mouse model. A peak of small RNA of 25–200 nucleotides was detected in mouse serum and feces 72 h after radiation exposure, and miRNA presence in serum and feces was inferred. MiRNAs expressed in the small intestine and were increased by more than 2.0-fold in serum or feces following a 10 Gy radiation exposure were detected by microarray analysis and were 4 in serum and 19 in feces. In this study, miR-375-3p, detected in serum and feces, was identified as the strongest candidate for a high-dose radiation biomarker in serum and/or feces using a radiation-induced intestinal injury model.
Project description:The study investigated the impact of environment on the composition of the gut microbiota and mucosal immune development and function at gut surfaces in early and adult life. Piglets of similar genotype were reared in indoor and outdoor environments and in an experimental isolator facility. Mucosa-adherent microbial diversity in the pig ileum was characterized by sequence analysis of 16S rRNA gene libraries. Host-specific gene responses in gut ileal tissues to differences in microbial composition were investigated using Affymetrix microarray technology and Real-time PCR. Experiment Overall Design: Animals were reared on the sow at an outdoor or indoor facility. Additional piglets from the indoor facility were transferred to individual isolator units at 24 hours of age, and given a daily dose of antibiotic cocktail for the duration of the study. Piglets were weaned at day 28. From day 29 onwards, piglets were fed creep feed ad libitum. Ileal tissue samples were excised from N=6 piglets per group at day 5, 28 and 56.