Project description:We collected Arabidopsis globular stage embryo proper and suspensor from 5 or 7-micro paraffin sections using the Lecia LMD6000 system in order to identify the mRNAs present in different embryo regions.
Project description:SuperSeries contain expression data from the nuclei of cell types involved in patterning events, with focus on root apical stem cell formation, at 16-cell stage, early globular stage and late globular stage in the early Arabidopsis embryo (atlas). Expression data comparing nuclear and cellular RNA isolated from whole 16-cell stage Arabidopsis embryos is also included. This SuperSeries is composed of the SubSeries listed below.
Project description:We collected globular stage seed compartments from 5 or 7-micron paraffin sections using the Leica LMD6000 system in order to identify the mRNAs present in different compartments of an Arabidopsis seed containing a globular stage embryo. For the purposes of this study we broke down the seed into 8 capturable compartments: embyro proper, suspensor, micropylar endosperm, peripheral endosperm, chalazal endosperm, chalazal seed coat, general seed coat, and whole seeds. Keywords: cell type comparison
Project description:We microdissected each embryo region from 6-micron paraffin sections using the Leica AS LMD system to identify all genes active in different embryo region of an SRB seed containing globular-stage embryos. Keywords: cell type comparison
Project description:We microdissected each embryo region from 6-micron paraffin sections using the Leica AS LMD system to identify all genes active in different embryo region of an SRB seed containing globular-stage embryos. Experiment Overall Design: Globular-stage embryo regions were isolated using the Leica AS LMD system. Total RNA was amplified and hybridized with Affymetrix Soybean Genome GeneChip Arrays.
Project description:We collected globular stage seed compartments from 5 or 7-micron paraffin sections using the Leica LMD6000 system in order to identify the mRNAs present in different compartments of an Arabidopsis seed containing a globular stage embryo. For the purposes of this study we broke down the seed into 7 capturable compartments: embyro proper, suspensor, micropylar endosperm, peripheral endosperm, chalazal endosperm, chalazal seed coat and general seed coat. Experiment Overall Design: Globular stage seed compartments were isolated using the LMD6000 system. Total RNA was amplified and hybridized with Affymetrix ATH1 Arabidopsis array for 15 samples (Embryo Proper, Micropylar Endosperm, Peripheral Endosperm, General Seed Coat and Chalazal Seed Coat, 2 biological replicates each and Chalazal Endosperm with 3 biological replicates).
Project description:We used laser capture microdissection (LCM) to capture globular stage common bean embryo proper and suspensor, and profiled the transcriptome of these two embryo regions using next-generation sequencing. Our long-term goal is to understand the region-specific differentiation processes that occur during early embryo development and how genes are activated specifically in the suspensor and embryo proper. Illumina sequencing of transcripts from laser-captured embryo proper and suspensor regions of common bean globular stage embryo. Two biological replicates were collected for each embryo region.
Project description:We used laser capture microdissection (LCM) to capture globular stage common bean embryo proper and suspensor, and profiled the transcriptome of these two embryo regions using next-generation sequencing. Our long-term goal is to understand the region-specific differentiation processes that occur during early embryo development and how genes are activated specifically in the suspensor and embryo proper.
Project description:We used laser capture microdissection (LCM) to capture globular scarlet runner bean embryo propers and suspensors, and profiled the transcriptomes of these two embryo regions using next-generation sequencing. Our long-term goal is to understand the region-specific differentiation processes that occur during early embryo development and how genes are activated specifically in the suspensor and embryo proper. Illumina sequencing of transcripts from laser-captured embryo proper and suspensor regions of scarlet runner bean globular stage embryos. Two biological replicates were collected for each embryo region.
Project description:We used laser capture microdissection (LCM) to capture globular scarlet runner bean embryo propers and suspensors, and profiled the transcriptomes of these two embryo regions using next-generation sequencing. Our long-term goal is to understand the region-specific differentiation processes that occur during early embryo development and how genes are activated specifically in the suspensor and embryo proper.