Project description:Microarray analysis to investigate the global gene expression patterns in response to ABA under different light quality backgrounds
Project description:The goal of this study is to obtain genome-wide shade-responsive genes in adult plant. We grew plants under long-day condition with high R/FR ratio (simulated "sun" condition) for two weeks. Plants were treated with shade starting at ZT 4 or left in the sun. We prepared two replicates of each sample at 1 hour and 4 hours after sun and shade treatment and five plants were pooled for each replicate. Cotyledons, hypocotyls, and roots were removed from the samples, leaving leaves and apical tissue.
Project description:To compare the genome-wide transcriptional effect of ABA and iSB09 in tomato plants, we performed RNA-seq analysis of mock-, 10 uM ABA- or 20 uM iSB09-treated plants. Differential gene expression analysis between mock- and ABA-treated or iSB09-treated seedlings was done with DESeq2 and genes with an absolute value of log2 fold change (log2FC) > 1 or (log2FC) < -1 and p-adjusted value (padj) < 0.05 were selected. iSB09 upregulated and downregulated genes represent a subset of the ABA-responsive genes, which reflects the activation of PYL1-like and PYL4-like ABA receptors in tomato seedlings.
Project description:This study was designed to identify changes in gene expression when corn was placed under various related stresses including being grown with a competing weed (canola) to the V4 or V8 stage, or when 40% shade cloth was present to the V4 or V8 stage, or under low nitrogen (no added nitrogen fertilizer), or under weed/shade free fertilized control conditions. In all 5 treatments and the control, samples were harvested at V8. Mechanisms underlying early season weed stress on crop growth are not well described. Corn vegetative growth and development, yield, and gene expression response to nitrogen (N), light (40% shade), and weed stresses were compared with the response of nonstressed plants. Vegetative parameters, including leaf area and biomass, were measured from V2 toV12 corn stages. Transcriptome (2008) or quantitative Polymerase Chain Reaction (q PCR) (2008/09) analyses examined differential gene expression in stressed versus nonstressed corn at V8. Vegetative parameters were impacted minimally by N stress although grain yield was 40% lower. Shade, present until V2, reduced biomass and leaf area > 50% at V2 and, at V12, recovering plants remained smaller than nonstressed plants. Grain yields of shade-stressed plants were similar to nonstressed controls, unless shade remained until V8. Growth and yield reductions due to weed stress in 2008 were observed when weeds remained until V6. In 2009, weed stress at V2 reduced vegetative growth, and weed stress until V4 or later reduced yield. Principle component analysis of differentially expressed genes indicated that shade and weed stress had more similar gene expression patterns to each other than to nonstressed or low N stressed tissues. Weed-stressed corn had 630 differentially expressed genes compared with the nonstressed control. Of these genes, 259 differed and 82 were shared with shade-stressed plants. Corn grown in N-stressed conditions shared 252 differentially expressed genes with weed-stressed plants. Ontologies associated with light/photosynthesis, energy conversion, and signaling were down-regulated in response to all three stresses. Although shade and weed stress clustered most tightly together, only three ontologies were shared by these stresses, O-methyltransferase activity (lignification processes), Poly U binding activity (post-transcriptional gene regulation), and stomatal movement. Based on both morphologic and genomic observations, results suggest that shade, N, and weed stresses to corn are regulated by both different and overlapping mechanisms.
Project description:Shade avoidance syndrome (SAS) is a strategy of major adaptive significance that includes the elongation of vegetative structures and leaf hyponasty. Major transcriptional rearrangements underlie for the reallocation of resources to elongate vegetative structures and redefine the plant architecture under shade to compete for photosynthesis light. BBX28 is a transcription factor involved in seedling de-etiolation and flowering in Arabidopsis thaliana, but its function in the SAS is completely unknown. Here we studied the function of BBX28 in the regulation of gene expression under simulated shade conditions.
Project description:This study was designed to identify changes in gene expression when corn was placed under various related stresses including being grown with a competing weed (canola) to the V4 or V8 stage, or when 40% shade cloth was present to the V4 or V8 stage, or under low nitrogen (no added nitrogen fertilizer), or under weed/shade free fertilized control conditions. In all 5 treatments and the control, samples were harvested at V8. Mechanisms underlying early season weed stress on crop growth are not well described. Corn vegetative growth and development, yield, and gene expression response to nitrogen (N), light (40% shade), and weed stresses were compared with the response of nonstressed plants. Vegetative parameters, including leaf area and biomass, were measured from V2 toV12 corn stages. Transcriptome (2008) or quantitative Polymerase Chain Reaction (q PCR) (2008/09) analyses examined differential gene expression in stressed versus nonstressed corn at V8. Vegetative parameters were impacted minimally by N stress although grain yield was 40% lower. Shade, present until V2, reduced biomass and leaf area > 50% at V2 and, at V12, recovering plants remained smaller than nonstressed plants. Grain yields of shade-stressed plants were similar to nonstressed controls, unless shade remained until V8. Growth and yield reductions due to weed stress in 2008 were observed when weeds remained until V6. In 2009, weed stress at V2 reduced vegetative growth, and weed stress until V4 or later reduced yield. Principle component analysis of differentially expressed genes indicated that shade and weed stress had more similar gene expression patterns to each other than to nonstressed or low N stressed tissues. Weed-stressed corn had 630 differentially expressed genes compared with the nonstressed control. Of these genes, 259 differed and 82 were shared with shade-stressed plants. Corn grown in N-stressed conditions shared 252 differentially expressed genes with weed-stressed plants. Ontologies associated with light/photosynthesis, energy conversion, and signaling were down-regulated in response to all three stresses. Although shade and weed stress clustered most tightly together, only three ontologies were shared by these stresses, O-methyltransferase activity (lignification processes), Poly U binding activity (post-transcriptional gene regulation), and stomatal movement. Based on both morphologic and genomic observations, results suggest that shade, N, and weed stresses to corn are regulated by both different and overlapping mechanisms. three biological replicates for each treatment and the control were collected and the resulting labeled cDNA was hybridized to the 46,000-element maize microarray chip developed by the University of Arizona using their protocol (International Microarray Workshop Handbook, 2009Gardiner et al. 2005). The hybridization scheme was a dual hybridization using a rolling circle balanced dye swap design. Thus we had thre biological replicates for each growth condition amd two technical replicates for each biological sample.
Project description:Arabidopsis is a shade avioding plant. Under simulated shade light with reduced red-to-far red (R:FR) ratio around 0.7, hypocotyls of Arabidopsis seedlings elongate, which is one of the typical shade avoidance responses.We discovered that when the R:FR ratio further decreases to around 0.1 (strong shade), the shade-induced elongation of hypocotyl is abolished and phytochrome A (phyA) mediates this response.In this study, we aim to examine the difference between shade and strong shade treatment and uncover the role of phyA in regulating the shade avoidance responses.
Project description:We applied the tiling arrays to study the Arabidopsis whole-genome transcriptome under drought, cold, high-salinity and ABA treatment conditions and idenfied many stress- or ABA- responsive putative functional RNAs and fully-overlapping sense-antisense transcripts in Arabidopsis genome. Keywords: stress response