Project description:Drought represents a major constraint on maize production worldwide. Understanding the genetic basis for natural variation in drought tolerance of maize may facilitate efforts to improve this trait in cultivated germplasm. Here, using a genome-wide association study, we show that a miniature inverted-repeat transposable element (MITE) inserted in the promoter of a NAC gene (ZmNAC111) is significantly associated with natural variation in maize drought tolerance. For maize RNA-seq analysis, pooled tissues from three, eight-day-old maize seedlings were collected from transgenic and wild-type plants, prior to or after 2-hour dehydration, to conduct the RNA-seq analysis.
Project description:Maize is one of the most important crops in the world. With the exponentially increasing population and the need for ever increased food and feed production, an increased yield of maize grain (as well as rice, wheat and other grains) will be critical. Maize grain development is understood from the perspective of morphology, hormone responses, and storage reserve accumulation. This includes various studies on gene expression during embryo development and maturation but a global study of gene expression of the embryo has not been possible until recently. Transcriptome analysis is a powerful new tool that can be used to understand the genetic basis of embryo maturation. We undertook a transcriptomic analysis of normal maturing embryos at 15, 21 and 27 days after pollination (DAP), of one elite maize germplasm line that was utilized in crosses to transgenic plants. More than 19,000 genes were analyzed by this method and the challenge was to select subsets of genes that are vitally important to embryo development and maturation for the initial analysis. We describe the changes in expression for genes relating to primary metabolic pathways, DNA synthesis, late embryogenesis proteins and embryo storage proteins, shown through transcriptome analysis and confirmed levels of transcription for some genes in the transcriptome using qRT-PCR.
Project description:These RNA-seq samples represent ten different tissue types for the fifth version of the maize reference genome B73, sequenced by the NAM Consortium Group. These samples correspond to project ID PRJEB32225.
Project description:Through hierarchical clustering of transcript abundance data across a diverse set of tissues and developmental stages in maize, we have identified a number of coexpression modules which describe the transcriptional circuits of maize development.
Project description:In many eukaryotes, reproduction involves contributions of genetic material from two parents. At some genes there are parent-of-origin differences in the expression of the maternal and paternal alleles of a gene and this is referred to as imprinting. The analysis of allele-specific expression in several maize hybrids allowed the comprehensive detection of imprinted genes. By comparing allelic expression patterns in multiple crosses, it was possible to observe allelic variation for imprinting in maize. The comparison of genes subject to imprinting in multiple plant species reveals limited conservation for imprinting. The subset of genes that exhibit conserved imprinting in maize and rice may play important, dosage-dependent roles in regulation of seed development. In this study, deep sequencing of RNA isolated from 14 days-after-pollination (DAP) endosperm tissue of five reciprocal hybrid pairs was performed to identify imprinted genes.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from different maize tissues (including leaves, ears and tassels) collected from wild-type plants of the B73 variety. The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study.
Project description:Saha2011- Genome-scale metabolic network of
Zea mays (iRS1563)
This model is described in the article:
Zea mays iRS1563: a
comprehensive genome-scale metabolic reconstruction of maize
metabolism.
Saha R, Suthers PF, Maranas
CD.
PLoS ONE 2011; 6(7): e21784
Abstract:
The scope and breadth of genome-scale metabolic
reconstructions have continued to expand over the last decade.
Herein, we introduce a genome-scale model for a plant with
direct applications to food and bioenergy production (i.e.,
maize). Maize annotation is still underway, which introduces
significant challenges in the association of metabolic
functions to genes. The developed model is designed to meet
rigorous standards on gene-protein-reaction (GPR) associations,
elementally and charged balanced reactions and a biomass
reaction abstracting the relative contribution of all biomass
constituents. The metabolic network contains 1,563 genes and
1,825 metabolites involved in 1,985 reactions from primary and
secondary maize metabolism. For approximately 42% of the
reactions direct literature evidence for the participation of
the reaction in maize was found. As many as 445 reactions and
369 metabolites are unique to the maize model compared to the
AraGEM model for A. thaliana. 674 metabolites and 893 reactions
are present in Zea mays iRS1563 that are not accounted for in
maize C4GEM. All reactions are elementally and charged balanced
and localized into six different compartments (i.e., cytoplasm,
mitochondrion, plastid, peroxisome, vacuole and extracellular).
GPR associations are also established based on the functional
annotation information and homology prediction accounting for
monofunctional, multifunctional and multimeric proteins,
isozymes and protein complexes. We describe results from
performing flux balance analysis under different physiological
conditions, (i.e., photosynthesis, photorespiration and
respiration) of a C4 plant and also explore model predictions
against experimental observations for two naturally occurring
mutants (i.e., bm1 and bm3). The developed model corresponds to
the largest and more complete to-date effort at cataloguing
metabolism for a plant species.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180064.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2.
Project description:Transcriptional profiling of 4 maize varieties comparing genetic root response under control temperature conditions with genetic root response under low temperature conditions