Project description:While global transcription factors (TFs) have been studied extensively in Escherichia coli model strains, conservation and diversity in TF regulation between strains is still unknown. Here we use a combination of ChIP-exo--to define ferric uptake regulator (Fur) binding sites--and differential gene expression--to define the Fur regulon in nine E. coli strains. We then define a pan-regulon consisting of 469 target genes that includes all Fur target genes in all nine strains. The pan-regulon is then divided into the core regulon (target genes found in all the strains, n=36), the accessory regulon (target found in two to eight strains, n=158) and the unique regulon (target genes found in one strain, n=275). Thus, there is a small set of Fur regulated genes common to all nine strains, but a large number of regulatory targets unique to a particular strain. Many of the unique regulatory targets are genes unique to that strain. This first-established pan-regulon reveals a common core of conserved regulatory targets and significant diversity in transcriptional regulation amongst E. coli strains, reflecting diverse niche specification and strain history.
Project description:These E. coli strains were grown with various signaling molecules and the expression profiles were determined. Keywords: addition of quorum and host hormone signals
Project description:Background: Based on 32 Escherichia coli and Shigella genome sequences, we have developed an E. coli pan-genome microarray. Publicly available genomes were annotated in a consistent manor to define all currently known genes potentially present in the species. The chip design was evaluated by hybridization of DNA from two sequenced E. coli strains, K-12 MG1655 (a commensal) and O157:H7 EDL933 (an enterotoxigenic E. coli). A dual channel and single channel analysis approach was compared for the comparative genomic hybridization experiments. Moreover, the microarray was used to characterize four unsequenced probiotic E. coli strains, currently marketed for beneficial effects on the human gut flora. Results: Based on the genomes included in this study, we were able to group together 2,041 genes that were present in all 32 genomes. Furthermore, we predict that the size of the E. coli core genome will approach ~1,560 essential genes, considerably less than previous estimates. Although any individual E. coli genome contains between 4,000 and 5,000 genes, we identified more than twice as many (11,872) distinct gene groups in the total gene pool (“pan-genome”) examined for microarray design. Benchmarking of the design based on sequenced control strain samples demonstrated a high sensitivity and relatively low false positive rate. Moreover, the array was highly sufficient to investigate the gene content of apathogenic isolates, despite the strong bias towards pathogenic E. coli strains that have been sequenced so far. Our analysis of four probiotic E. coli strains demonstrate that they share a gene pool very similar to the E. coli K-12 strains but also show significant similarity with enteropathogenic strains. Nonetheless, virulence genes were largely absent. Strain-specific genes found in probiotic E. coli but absent in E. coli K12 were most frequently phage-related genes, transposases and other genes related to mobile DNA, and metabolic enzymes or factors that may offer colonization fitness, which together with their asymptomatic nature may explain their nature. Conclusion: This high-density microarray provides an excellent tool for characterizing either DNA content or gene expression from unknown E. coli strains. Keywords: Comparative genomic hybridizations
Project description:We report RNA-sequencing data of 12 platelet samples isolated from four healthy individuals and incubated with either E. coli K12, E. coli O18 or no bacteria. This dataset highlights the differential effect of bacteria on spliced platelet RNA profiles.
Project description:Examination of E. coli transcripts present in bacteria in urine samples from 8 patients attending a urology clinic with symptoms of cystitis, as compared to transcripts present in the same E. coli strains during mid-exponential growth in filter-sterilized human urine in vitro.
Project description:Escherichia coli, the common inhabitant of the mammalian intestine, exhibits considerable intraspecies genomic variation, which has been suggested to reflect adaptation to different ecological niches. Also, regulatory trade-offs, e.g., between catabolic versatility and stress protection, are thought to result in significant physiological differences between strains. For these reasons, the relevance of experimental observations made for “domesticated” E. coli strains with regard to the behaviour of this species in its natural environments is often questioned and frequently doubts are raised on the status of E. coli as a defined species. We therefore investigated the variability of important eco-physiological functions such as carbon substrate uptake and breakdown capabilities as well as stress defence mechanisms in the genomes of commensal and pathogenic E. coli strains. Furthermore, eco-physiological properties of environmental strains were compared to standard laboratory strain K-12 MG1655. Catabolic, stress protection, and carbon- and energy source transport operons showed a very low intraspecies variability in 57 commensal and pathogenic E. coli. Environmental isolates adapted to glucose-limited growth in a similar way as E. coli MG1655, namely by increasing their catabolic flexibility and by inducing high affinity substrate uptake systems. Our results indicate that the major eco-physiological properties are highly conserved in the natural population of E. coli. This questions the proposed dominant role of horizontal gene transfer for niche adaptation. Keywords: comparative genomic hybridisation
Project description:Strains of urinary tract associated E. coli both recent isolates and from the ECOR collection and non pathogenic E. coli strains were analyzed. Replicates were performed to establish the reproduciblity, then single experiments were performed there on.
Project description:Transcription profiles in BL21, BL21/pOri1 and BL21/pOri2 were analysed using DNA microarray technology. BL21, BL21/pOri1 or BL21/pOri2 strains were cultured at chemostat status and harvested after the cultivation arrived steady status. Keywords: Effects of plasmid DNA on Escherichia coli metabolism