Project description:Ticks carry a wide range of known human and animal pathogens and are postulated to carry others with the potential to cause disease. Here we report a discovery effort wherein unbiased high-throughput sequencing was used to characterize the virome of 2,021 ticks, including Ixodes scapularis (n = 1,138), Amblyomma americanum (n = 720), and Dermacentor variabilis (n = 163), collected in New York, Connecticut, and Virginia in 2015 and 2016. We identified 33 viruses, including 24 putative novel viral species. The most frequently detected viruses were phylogenetically related to members of the Bunyaviridae and Rhabdoviridae families, as well as the recently proposed Chuviridae. Our work expands our understanding of tick viromes and underscores the high viral diversity that is present in ticks. IMPORTANCE The incidence of tick-borne disease is increasing, driven by rapid geographical expansion of ticks and the discovery of new tick-associated pathogens. The examination of the tick microbiome is essential in order to understand the relationship between microbes and their tick hosts and to facilitate the identification of new tick-borne pathogens. Genomic analyses using unbiased high-throughput sequencing platforms have proven valuable for investigations of tick bacterial diversity, but the examination of tick viromes has historically not been well explored. By performing a comprehensive virome analysis of the three primary tick species associated with human disease in the United States, we gained substantial insight into tick virome diversity and can begin to assess a potential role of these viruses in the tick life cycle.
Project description:Introduction: Ixodes scapularis ticks are hematophagous arthropods capable of transmitting many infectious agents to humans. The process of blood feeding is an extended and continuous interplay between tick and host responses. While this process has been studied extensively in vitro, no global understanding of the host response to ticks has emerged. To address this issue, we measured skin-specific expression of 233 discrete genes at 8 time points during primary and secondary infestations of mice with pathogen-free I. scapularis nymphs. Selected results were then validated at the mRNA and protein levels. Results: Primary infestation was characterized by the late induction of an innate immune response. Lectin pattern recognition receptors, cytokines, and chemokines were upregulated consistent with increased neutrophil and macrophage migration. Gene ontology and pathway analyses of downregulated genes suggested inhibition of gene transcription and Th17 immunity. During the secondary infestation, additional genes were modulated suggesting a broader involvement of immune cells including CD8 and CD4 positive T lymphocytes. The cytokine response showed a mixed Th1/Th2 profile with a potential for T regulatory cell activity. Key gene ontology clusters observed during the secondary infestation were cell migration and activation. Matrix metalloproteinases were upregulated, apoptosis-related genes were differentially modulated, and immunoreceptor signaling molecules were upregulated. In contrast, transcripts related to mitogenic, WNT, Hedgehog, and stress pathways were downregulated. Conclusions: Our results support a model of tick feeding where lectin pattern recognition receptors orchestrate an innate inflammatory response during primary infestation that primes a mixed Th1/Th2 response upon secondary exposure. Tick feeding inhibits gene transcription and Th17 immunity. Salivary molecules may also inhibit upregulation of mitogenic, WNT, Hedgehog, and stress pathways and enhance the activity of T regulatory cells, production of IL-10, and suppressors of cytokine signaling molecules (SOCS). This study provides the first comprehensive transcriptional analysis of the host response at the tick bite site and suggests both a potential model of the host cutaneous response and candidate genes for further description and investigation. Ear biopsies from BALB/cJ mice infested with Ixodes scapularis nymphs were assayed at 12, 48, 72, and 96 hours after infestation during a primary and secondary exposure. 3 mice were measured at each time point. Controls were 3 similarly housed but tick-free mice.
Project description:We report differential gene expression with tissue-specific signatures in tick cell lines infected with Anaplasma phagocytophilum - transcriptional response to infection of I. scapularis ISE6 cells resembled that of tick hemocytes while the response in I. ricinus IRE/CTVM20 cells resembles that of tick midguts.
Project description:UnlabelledA wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases.ImportanceTicks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases.
Project description:Ticks are blood feeding arthropod ectoparasites that transmit pathogens, which cause diseases in humans and animals worldwide. In the past ten decades, the continuous human exploitation of environmental resources and the increase in human outdoor activities has promoted contact with arthropod vectors normally present in the wild, resulting in increased transmission of vector-borne pathogens. In addition, vector populations are expanding in response to climate change and human interventions that impact reservoir host movement and human exposure to infected vectors. Among these emerging vector-borne pathogens, Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) has become an important tick-borne pathogen in the United States, Europe and Asia, with increasing numbers of infected people and animals every year. Diseases caused by A. phagocytophilum include human granulocytic anaplasmosis (HGA), equine and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. The natural infection cycle of A. phagocytophilum is dependent upon the presence of infected vertebrate reservoir hosts and Ixodid tick vectors. In the United States and Europe the main vector species are Ixodes scapularis, Ixodes pacificus, and Ixodes ricinus, while a wide range of mammals, lizards, and birds serve as reservoir hosts for various A. phagocytophilum genotypes. A. phagocytophilum initially infects tick midgut cells and then subsequently develops in salivary glands for transmission to susceptible hosts during tick feeding where the pathogen infects granulocytic cells, primarily neutrophils. Anaplasma phagocytophilum develops within membrane-bound inclusions in the host cell cytoplasm. This pathogen has evolved with its tick and vertebrate hosts through dynamic processes involving genetic traits of the pathogen and hosts that collectively mediate pathogen infection, development, persistence, and survival. However, the mechanisms used by A. phagocytophilum for molecular mechanisms involved in tick-pathogen interactions have not been fully characterized. The objective of this study is to characterize the dynamics of the microRNA response in the tick vector Ixodes scapularis in response to A. phagocytophilum infection. To address this objective, the composition of tick microRNAs was characterize using RNA sequencing in I. scapularis tick cells in response to A. phagocytophilum infection. The discovery of these mechanisms provides evidence that a control strategy could be developed targeted at both vertebrate and tick hosts for more complete control of A. phagocytophilum and its associated diseases.
Project description:Introduction: Ixodes scapularis ticks are hematophagous arthropods capable of transmitting many infectious agents to humans. The process of blood feeding is an extended and continuous interplay between tick and host responses. While this process has been studied extensively in vitro, no global understanding of the host response to ticks has emerged. To address this issue, we measured skin-specific expression of 233 discrete genes at 8 time points during primary and secondary infestations of mice with pathogen-free I. scapularis nymphs. Selected results were then validated at the mRNA and protein levels. Results: Primary infestation was characterized by the late induction of an innate immune response. Lectin pattern recognition receptors, cytokines, and chemokines were upregulated consistent with increased neutrophil and macrophage migration. Gene ontology and pathway analyses of downregulated genes suggested inhibition of gene transcription and Th17 immunity. During the secondary infestation, additional genes were modulated suggesting a broader involvement of immune cells including CD8 and CD4 positive T lymphocytes. The cytokine response showed a mixed Th1/Th2 profile with a potential for T regulatory cell activity. Key gene ontology clusters observed during the secondary infestation were cell migration and activation. Matrix metalloproteinases were upregulated, apoptosis-related genes were differentially modulated, and immunoreceptor signaling molecules were upregulated. In contrast, transcripts related to mitogenic, WNT, Hedgehog, and stress pathways were downregulated. Conclusions: Our results support a model of tick feeding where lectin pattern recognition receptors orchestrate an innate inflammatory response during primary infestation that primes a mixed Th1/Th2 response upon secondary exposure. Tick feeding inhibits gene transcription and Th17 immunity. Salivary molecules may also inhibit upregulation of mitogenic, WNT, Hedgehog, and stress pathways and enhance the activity of T regulatory cells, production of IL-10, and suppressors of cytokine signaling molecules (SOCS). This study provides the first comprehensive transcriptional analysis of the host response at the tick bite site and suggests both a potential model of the host cutaneous response and candidate genes for further description and investigation.
Project description:Repellents serve an important role in bite protection. Tick repellents largely rely on biomechanisms that induce responses with direct contact, but synthetic pyrethroids used as spatial repellents against insects have received recent attention for potential use in tick protection systems. An in vitro vertical climb assay was designed to assess spatial repellency against Dermacentor variabilis, Amblyomma americanum, and Ixodes scapularis adult, female ticks. Climbing behavior was assessed with and without the presence of two spatial repellents, transfluthrin and metofluthrin. Repellency parameters were defined to simulate the natural questing behavior of ambushing ticks, including measures of detachment, pseudo-questing duration, climbing deterrence, and activity. Significant effects were observed within each parameter. D. variabilis showed the greatest general susceptibility to each repellent, followed by A. americanum, and I. scapularis. The most important and integrative measure of repellency was climbing deterrence-a measure of the spatial repellent's ability to disrupt a tick's natural propensity to climb. Transfluthrin deterred 75% of D. variabilis, 67% of A. americanum, and 50% of I. scapularis. Metofluthrin was slightly more effective, deterring 81% of D. variabilis, 73% of A. americanum, and 72% of I. scapularis. The present study poses a novel paradigm for repellency and reports a preliminary assessment of spatial repellent effect on tick behavior. Further research will assess spatial repellency in a more natural setting, scale exposure conditions, and incorporate host cues.