Project description:Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents.
Project description:Rivers containing effluents from water treatment plants are complex soups of compounds, ranging from pharmaceuticals to natural hormones. Male fathead minnows (Pimephales promelas) were exposed for 3 weeks to effluent waters from the Metropolitan Wastewater Treatment Plant in St. Paul, MN. Fish were tested for their competitive nest holding behavior. Changes in vitellogenin were measured and these were correlated to changes in gene expression using a 22,000 gene microarray developed specifically for fathead minnows. Significant changes in gene expression were observed in both liver and gonad, which correlate to phenotypic changes of vitellogenin induction and reduced competitive behavior. We also compared by real-time PCR the expression changes in key genes related to steroid biosynthesis and metabolism in fish exposed to the effluent as well as in fish exposed to a model estrogen and a model androgen. While the gene expression signature from effluent-exposed fish shared some elements with estrogen and androgen signatures, overall it was different, underscoring the complexity of compounds present in sewage and their different modes of action.
Project description:Biodegradation of synthetic compounds has been studied extensively, but the metabolic diversity required for catabolism of many natural compounds has not been addressed. 5-Nitroanthranilic acid (5NAA), produced in soil by Streptomyces scabies, is also the starting material for synthetic dyes and other nitroaromatic compounds. Bradyrhizobium JS329 was isolated from soil by selective enrichment with 5NAA. When grown on 5NAA, the isolate released stoichiometric amounts of nitrite and half of the stoichiometric amounts of ammonia. Enzyme assays indicate that the initial step in 5NAA degradation is an unusual hydrolytic deamination for formation of 5-nitrosalicylic acid (5NSA). Cloning and heterologous expression revealed the genes that encode 5NAA deaminase (naaA) and the 5NSA dioxygenase (naaB) that cleaves the aromatic ring of 5NSA without prior removal of the nitro group. The results provide the first clear evidence for the initial steps in biodegradation of amino-nitroaromatic compounds and reveal a novel deamination reaction for aromatic amines.
Project description:Bradyrhizobium sp. strain WSM471 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen- (N2) fixing root nodule formed on the annual legume Ornithopus pinnatus (Miller) Druce growing at Oyster Harbour, Albany district, Western Australia in 1982. This strain is in commercial production as an inoculant for Lupinus and Ornithopus. Here we describe the features of Bradyrhizobium sp. strain WSM471, together with genome sequence information and annotation. The 7,784,016 bp high-quality-draft genome is arranged in 1 scaffold of 2 contigs, contains 7,372 protein-coding genes and 58 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.
Project description:To investigate gene expression changes in fish by the secondary effluent (directly released to environment) of a waterwater treatment plant in Tucson, Arizona, zebrafish larvae with 5-day exposure to the original (1x) or half (0.5x) concentration of the effluent were analyzed using Agilent G2519F-026437 Zebrafish Oligo Microarray.
Project description:Rainbow darter (Etheostoma caeruleum) are a small benthic fish found in North America. This species is sensitive to sewage effluent in the environment, showing the presence of intersex in up to 80% of males in near-field areas in the Grand River, ON. To learn more about the molecular events associated with intersex, we developed a customized oligonucleotide microarray (4x180K) with next generation sequencing (454 Roche) to characterize molecular responses in the gonad. Transcriptomics was performed on both males and females from both a reference site and a polluted site. Males with and without intersex from the polluted site were compared to the control males. Rainbow darter were sampled from from the Grand River in May 2011. Fish were selected according to the location, gonad maturity, and intersex index. Reference fish were taken from the upstream to the urban area; exposed fish were taken from downstream of from Kitchener MWWE treatment plant.