Project description:We report the effect of oxygenation state in lactose grown escherichia coli producing recombinant proteins. To shed more light on the mechanistic correlation between the uptake of lactose and dissolved oxygen, a comprehensive study has been undertaken with the E. coli BL21 (DE3) strain. Differences in consumption pattern of lactose, metabolites, biomass and product formation due to aerobiosis have been investigated. Transcriptomic profiling of metabolic changes due to aerobic process and microaerobic process during protein formation phase has been studied and the results provide a deeper understanding of protein production in E. coli BL21 (DE3) strains with lactose based promoter expression systems.This study also provides a scientific understanding of escherichia coli metabolism upon oxygen fluctuations.
Project description:We have previously reported that phosphoenolpyruvate carboxykinase(Pck) overexpression under glycolytic conditions enables Escherichia coli to harbor a high intracellular ATP pool resulting in enhanced recombinant protein synthesis and biohydrogen production. To understand possible reasons of the high ATP haboring cell, we carried out transcriptome and metabolic flux analysis.
Project description:Strong production of recombinant proteins interfere with cellular processes in many ways. The extent of the bacterial stress response is determined by the specific properties of the recombinant protein, and by the rates of transcription and translation. The consideration of bacterial stress and starvation responses is of crucial importance for the successful establishment of an industrial large scale bioprocess. Stress genes can be used as marker genes in order to monitor the fitness of industrial bacterial hosts during fermentation processes. For this purpose, here in our study we have applied transcriptome analysis for the description of general and specific stress and starvation responses of Escherichia coli. Producing recombinant protein (Xylanase) in high cell density fed batch culture.
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:DNA microarrays were used to compare the E. coli gene expression response to soluble and insoluble recombinant protein production. The study objective was to characterize the dynamic transcriptional changes that occur as insoluble recombinant protein is produced
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.
Project description:For over 30 years, serine hydroxamate has been used to chemically stimulate a stringent response in Escherichia coli and other bacteria. These studies have elucidated numerous characteristics of the classical stringent response beyond the simple cellular response to an amino acid shortage, including phospholipid synthesis and protease up-regulation. In this study, the effects of a serine hydroxamate addition on high cell density recombinant E. coli were examined and compared to the effects of recombinant protein production to determine overlaps, as recombinant protein production stress has often been attributed to amino acid shortages. Both the transcriptome and growth characteristics were evaluated and compared. The serine hydroxamate addition profoundly decreased the culture growth rate, whereas, recombinant protein production did not. Conversely, the transcriptome profile of the recombinant E. coli cultures were relatively unaffected by the serine hydroxamate addition, yet recombinant protein production dramatically changed the transcriptome profile. A subset of the classical stringent response genes were effected by the serine hydroxamate addition, whereas, recombinant protein production regulated numerous classical stringent response genes; however, not all. The genes that were regulated by the serine hydroxamate addition include numerous fatty acid synthesis genes, in agreement with altered phospholipids synthesis reports. These results indicate that recombinant protein production and the stringent response have many overlapping responses; however, are far from identical. It was hypothesized that recombinant protein production leads to a stringent response due to the high amino acid synthesis demands related to recombinant protein synthesis. A comparison of the transcriptomes during recombinant protein production and a chemical imposed stringent response would assist with determining what portion of the “metabolic burden” associated with recombinant protein production is due to amino acid shortages. In this study, the transcriptome profiles of recombinant E. coli were examined and compared for the three culture conditions: 1) Normal growth, no external stress; 2) L-serine hydroxamate addition (to mediate a stringent response); and 3) IPTG-induction to produce the recombinant protein chloramphenicol acetyltransferase (CAT). The transcriptome profiles from these three conditions were analyzed using Affymetrix Anti-sense E. coli GeneChip® microarrays.