Project description:Trophoblast stem cells represent the stem cell population of the extra-embryonic lineage and arise as a result of the first cell fate decision. From blastocyst stage onwards, a distinct epigenetic lineage barrier strictly separates mouse embryonic and extra-embryonic lineages. Recently, it has been shown that this epigenetic barrier cannot be fully overcome as the expression of TS-determining factors in embryonic stem cells lead to incomplete transdifferentiation. Here, we demonstrate that transient expression of Tfap2c, Gata3, Eomes and Ets2 in fibroblasts suffices to generate cells which are almost identical to trophoblast stem cells based on morphology, expression and methylation pattern. Further, these induced trophoblast stem cells display transgene independent self-renewal, differentiate along the extra-embryonic lineage and chimerize the placenta upon blastocyst injection. Our findings provide insights into the transcription factor networks governing trophoblast stem cell identity and offer a new tool for studying the hierarchy of those factors.
Project description:Trophoblast stem cells represent the stem cell population of the extraembryonic lineage and arise as result of the first cell fate decision. From the blastocyst stage onwards, the extraembryonic lineage is strictly separated from the embryonic lineage by a distinct epigenetic lineage barrier. Recently, it has been shown, that this epigenetic barrier cannot be fully overcome as the expression of TS-determining factors in embryonic stem cells lead to incomplete trans-differentiation. Here we demonstrate that transient expression of Tfap2c, Gata3, Eomes and Ets2 in fibroblasts suffices to generate cells, which are almost equivalent to trophoblast stem cells based on morphology, expression and methylation patterns. Further, these induced trophoblast stem cells display self-renewal without exogenous factor expression, differentiate along the extraembryonic lineage and chimerize the placenta upon blastocyst injection. Our findings provide insights into transcription factor networks governing TSC identity and offer a new tool for studying the hierarchy of those factors.