Project description:Whole-genome bisulfite sequencing (WGBS) is currently the gold standard for DNA methylation (5-methylcytosine, 5mC) profiling, however the destructive nature of sodium bisulfite results in DNA fragmentation and subsequent biases in sequencing data. Such issues have led to the development of bisulfite-free methods for 5mC detection. Nanopore sequencing is a long read non-destructive approach that directly analyzes DNA and RNA fragments in real time. Recently, computational tools have been developed that enable base-resolution detection of 5mC from Oxford Nanopore sequencing data. In this chapter we provide a detailed protocol for preparation, sequencing, read assembly and analysis of genome-wide 5mC using Nanopore sequencing technologies.
Project description:5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are modified versions of cytosine in DNA with roles in regulating gene expression. Using whole genomic DNA from mouse cerebellum, we have benchmarked 5mC and 5hmC detection by Oxford Nanopore Technologies sequencing against other standard techniques. In addition, we assessed the ability of duplex base-calling to study strand asymmetric modification. Nanopore detection of 5mC and 5hmC is accurate relative to compared techniques and opens new means of studying these modifications. Strand asymmetric modification is widespread across the genome but reduced at imprinting control regions and CTCF binding sites in mouse cerebellum. This study demonstrates the unique ability of nanopore sequencing to improve the resolution and detail of cytosine modification mapping.
Project description:State-of-the-art algorithms for m6A detection and quantification via nanopore direct RNA sequencing have been continuously developed, little is known about their capacities and limitations, which makes a comprehensive assessment in urgent need. Therefore, we performed comprehensive benchmarking of 10 computational tools relying on current-based and base-calling “errors” strategies for m6A detection by nanopore sequencing.
Project description:The replication of eukaryotic genomes is highly stochastic, making it difficult to determine the replication dynamics of individual molecules with existing methods. We now report a sequencing method for the measurement of replication fork movement on single molecules by Detecting Nucleotide Analogue signal currents on extremely long nanopore traces (D‑NAscent). Using this method, we detect BrdU incorporated by Saccharomyces cerevisiae to reveal, at a genomic scale and on single molecules, the DNA sequences replicated during a pulse labelling period. Under conditions of limiting BrdU concentration, D-NAscent detects the differences in BrdU incorporation frequency across individual molecules to reveal the location of active replication origins, fork direction, termination sites, and fork pausing/stalling events. We used sequencing reads of 20-160 kb, to generate the first whole genome single-molecule map of DNA replication dynamics and discover a new class of low frequency stochastic origins in budding yeast.
Project description:Replicon-seq is a method to study the progression of sister replisomes during DNA replication. This method relies excision of the full-length of replicons by the fusion of MNase to MCM4 and sequencing via Nanopore technology.
Project description:Single-molecule read technologies allow for detection of epigenomic base modifications during routine sequencing by analysis of kinetic data during the reaction, including the duration between base incorporations at the elongation site (the "inter-pulse duration.") Methylome data associated with a closed de novo bacterial genome of Salmonella enterica subsp. enterica serovar Javiana str. CFSAN001992 was produced and submitted to the Gene Expression Omnibus. Single-sample sequencing and base modification detection of cultured isolate of a foodborne pathogen.
Project description:Multiple DNA polymerases are needed to replicate genetic information. Here we describe the use of ribonucleotide incorporation as a biomarker of replication enzymology in vivo. We find that ribonucleotides are incorporated into the yeast nuclear genome in replicase specific and strand-specific patterns that identify replication origins and where polymerase switching occurs. Ribonucleotide density varies across the genome as a function of the replicase, base, local sequence and proximity to nucleosomes and transcription start sites. Ribonucleotides are present in one strand at high densityat mitochondrial replication origins, implying unidirectional replication of a circular genome. The evolutionary conservation of the enzymes that incorporate and process ribonucleotides in DNA suggests that the use of ribonucleotides as biomarkers of DNA synthesis in cells will have widespread applicability. Mapping genomic ribonucleotides in 14 Saccharomyces cerevisiae strains (seven DNA polymerase backgrounds, with or without RNH201), via HydEn-seq (end sequencing of genomic fragments generated by alkaline hydrolysis).
Project description:Base lesions in DNA can stall the replication machinery or induce mutations if bypassed. Consequently, lesions must be repaired before replication or in a post-replicative process to maintain genomic stability. Base excision repair (BER) is the main pathway for repair of base lesions, but how BER is organized during DNA replication is unclear. Here we refined the iPOND (isolation of proteins on nascent DNA) technique with targeted mass-spectrometry analysis, which enabled us to detect all proteins required for BER on nascent DNA and to monitor their spatiotemporal orchestration at replication forks. We demonstrate that XRCC1 and other BER/single-strand break repair (SSBR) proteins are enriched in replisomes in unstressed cells, supporting a cellular capacity of post-replicative BER/SSBR. Importantly, the DNA glycosylases MYH, UNG2, MPG, NTH1, NEIL1 and NEIL3 were also detected on nascent DNA. Thus our findings reveal that a broad spectrum of DNA base lesions are recognized and repaired by BER in a post-replicative process.
Project description:Base lesions in DNA can stall the replication machinery or induce mutations if bypassed. Consequently, lesions must be repaired before replication or in a post-replicative process to maintain genomic stability. Base excision repair (BER) is the main pathway for repair of base lesions, but how BER is organized during DNA replication is unclear. Here we refined the iPOND (isolation of proteins on nascent DNA) technique with targeted mass-spectrometry analysis, which enabled us to detect all proteins required for BER on nascent DNA and to monitor their spatiotemporal orchestration at replication forks. We demonstrate that XRCC1 and other BER/single-strand break repair (SSBR) proteins are enriched in replisomes in unstressed cells, supporting a cellular capacity of post-replicative BER/SSBR. Importantly, the DNA glycosylases MYH, UNG2, MPG, NTH1, NEIL1 and NEIL3 were also detected on nascent DNA. Thus our findings reveal that a broad spectrum of DNA base lesions are recognized and repaired by BER in a post-replicative process.