Project description:Lactobacillus brevis alleviates DSS-induced colitis by reprograming intestinal microbiota and influencing serum metabolome in murine model
Project description:Lactobacillus brevis alleviates DSS-induced colitis by reprograming intestinal microbiota and influencing serum metabolome in murine model
Project description:Lactobacillus pentosus alleviates DSS-induced colitis by increasing Akkermansia and affecting the serum metabolome in the murine model
Project description:B cells expand during the recovery after DSS-induced colonic inflammation and might play a role in influencing tissue repair. To analyze the impact B cells might have on intestinal epithelial cells and stromal cells during recovery after intestinal injury the transcriptional profile of these mice was analysed in mice depleted of B cells and control mice on day 14 after DSS colitis.
Project description:Colonic gene expression profiles of mice with DSS-induced colitis treated with apple peel polyphenolic extract Four-condition experiment: control, DSS-induced colitis, and mice treated with DAPP (two different doses (200 and 400 mg/kg/day) before or during induction and development of DSS-induced colitis.
Project description:To find out which miRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed miRNA microarray as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation. 5-7 weeks female BALB/c mice, (1) AOM/DSS group: AOM 12.5mg/kg i.p. at day 1, DSS drinking 5d/21dx3circles from day 5; (2) AOM group: AOM 10mg/kg i.p. 1/weekx6 from day 1; (3) DSS group: DSS drinking 5d/21dx3circles from day 5. The distal colon epithelial tissues were collected at day100 when tumor formed in AOM/DSS bearing mice. The miRNA microarray experiments were performed together.
Project description:Adamts12-deficient mice undergo more severe colitis than WT mice after induction with DSS. We used microarrays to determine the gene expression differences between Adamts12-deficient and WT mice during ulcerative colitis induced with DSS (dextran sodium sulfate) Fragments of distal colon from DSS-treated (2% DSS during 7 days and 1 day of recovery) and untreated Adamts12-deficient and WT mice were obtained for RNA extraction and hybridiztion with Affymetrix microarrays
Project description:Temporal genome profiling of DSS colitis The DSS induced mouse colitis model is often used to emulate Ulcerative Colitis (UC) in order understand pathophysiological mechanism of inflammatory bowel disease (IBD). Given the progressive nature of IBD, colon tissue gene expression changes during the evolution of disease, and knowing the changes in gene expression profiles could indentify potential diagnostic markers or additional therapeutic targets for colitis. Therefore, we performed temporal genome expression profiling analysis using the Affymetrix genome wide microarray system to identify broad scale changes in gene expression associated with the development of colitis. Keywords: Expression time course of mouse colon tissue induced by 3% DSS. C57BL/6J mice were given 3% DSS in the drinking water and tissues from individual cohorts were collected at days 0, 2, 4 and 6. Total RNA were extracted from the colon tissue and detected by Affymerix GeneChip Mouse Genome 430 2.0 Array.
Project description:Background: MicroRNAs (miRNAs) acting as negative regulators of gene expression are differentially expressed in intestinal tissues of patients with inflammatory bowel disease (IBD). Assessing the functional role of miRNAs in murine models of colitis facilitates elucidating the role of specific miRNAs in human IBD. The aim of this study was to determine the miRNA signature of murine models of colitis and to assess the influence of miR-21 on intestinal inflammation. Methods: miRNAs expression was accessed by microarray for acute and chronic murine model of colitis induced by DSS or TNBS. miR-21-deficient mouse and littermates controls were assessed in the standard DSS, TNBS and CD4+ T cell transfer models of colitis. RNAs of mouse colon and CD4+CD45RBHigh cells were analyzed by miRNA and mRNA microarray, and quantitative RT-PCR. Th1 polarization was accessed by flow-cytometry and ELISA. Results: Alterations of in miRNAs expression were identified for acute and chronic DSS colitis and TNBS colitis, receptively. The Expression of miRs-21, -142-3p and -223 was were distinct between DSS and TNBS models while overlap of numerous miRNAs was seen. Importantly, miRs-19b, -192 and -215, that are decreased in IBD, were significantly decreased in all 4 models of colitis. miR-21, which is increased in IBD, was increased in TNBS colitis but not the DSS colitis models. Further assessment of the miR-21-deficient 1-/- mice revealed that the deletion of miR-21 results in the exacerbation of both the TNBS and T cell-transfer models of colitis. Conclusions: miRNAs are differentially expressed in both human IBD and murine colitis, with overlap of several IBD-associated miRNAs. The demonstration that miR-21 deletion exacerbated CD4+ T cell-mediated models of colitis provides further evidence that miRNAs play significant roles in the pathogenesis of IBD. miRNAs expression was accesed for acute and chronic murine model of colitis induced by DSS or TNBS.Total of 20 samples with duplicates were analyed in this study.