Project description:Achromobacter spp. are emerging opportunistic Gram-negative rods responsible for diverse nosocomial or community-acquired infections. We describe, for the first time, the distribution of Achromobacter spp., defined by nrdA gene sequencing, and their antimicrobial susceptibility in a variety of non-respiratory samples recovered from hospitalized patients from 2010 to 2015. Of the 63 isolates studied, A. xylosoxidans was the most prevalent (41 isolates), and with the exception of A. insuavis (four isolates), the remaining 10 species identified were represented by one or two isolates only. All isolates were uniformly susceptible to piperacillin and piperacillin-tazobactam and 97% to meropenem, but 76% showed resistance to ciprofloxacin. This study confirms the diversity of Achromobacter spp. in non-cystic fibrosis (CF) isolates and the predominance of A. xylosoxidans, as previously reported for CF sputum isolates. There was no apparent link between the clinical site of infection and the species of Achromobacter.
Project description:Several members of the Gram-negative environmental bacterial genus Achromobacter are associated with serious infections, with Achromobacter xylosoxidans being the most common. Despite their pathogenic potential, little is understood about these intrinsically drug-resistant bacteria and their role in disease, leading to suboptimal diagnosis and management. Here, we performed comparative genomics for 158 Achromobacter spp. genomes to robustly identify species boundaries, reassign several incorrectly speciated taxa and identify genetic sequences specific for the genus Achromobacter and for A. xylosoxidans. Next, we developed a Black Hole Quencher probe-based duplex real-time PCR assay, Ac-Ax, for the rapid and simultaneous detection of Achromobacter spp. and A. xylosoxidans from both purified colonies and polymicrobial clinical specimens. Ac-Ax was tested on 119 isolates identified as Achromobacter spp. using phenotypic or genotypic methods. In comparison to these routine diagnostic methods, the duplex assay showed superior identification of Achromobacter spp. and A. xylosoxidans, with five Achromobacter isolates failing to amplify with Ac-Ax confirmed to be different genera according to 16S rRNA gene sequencing. Ac-Ax quantified both Achromobacter spp. and A. xylosoxidans down to ~110 genome equivalents and detected down to ~12 and ~1 genome equivalent(s), respectively. Extensive in silico analysis, and laboratory testing of 34 non-Achromobacter isolates and 38 adult cystic fibrosis sputa, confirmed duplex assay specificity and sensitivity. We demonstrate that the Ac-Ax duplex assay provides a robust, sensitive and cost-effective method for the simultaneous detection of all Achromobacter spp. and A. xylosoxidans and will facilitate the rapid and accurate diagnosis of this important group of pathogens.
Project description:Bacteriophages have recently been considered as an alternative biocontrol tool because of the widespread occurrence of antimicrobial-resistant Achromobacter xylosoxidans. Herein, we isolated a virulent bacteriophage (phiAxp-1) from a water sample of the Bohai sea of China that specifically infects A. xylosoxidans. Transmission electron microscopy revealed that phage phiAxp-1 belongs to the Siphoviridae. We sequenced the genome of phiAxp-1, which comprises 45,045 bp with 64 open reading frames. Most of the proteins encoded by phiAxp-1 have no similarity to sequences in the public databases. Twenty-one proteins with assigned functions share weak homology with those of other dsDNA bacteriophages infecting diverse hosts, such as Burkholderia phage KL1, Pseudomonas phage 73, Pseudomonas phage vB_Pae-Kakheti25, Pseudomonas phage vB_PaeS_SCH_Ab26, Acinetobacter phage IME_AB3 and Achromobacter phage JWX. The genome can be divided into different clusters for the head and tail structure, DNA replication and mazG. The sequence and genomic organization of bacteriophage phiAxp-1 are clearly distinct from other known Siphoviridae phages; therefore, we propose that it is a member of a novel genus of the Siphoviridae family. Furthermore, one-step growth curve and stability studies of the phage were performed, and the specific receptor of phiAxp-1 was identified as the lipopolysaccharide of A. xylosoxidans.
Project description:Achromobacter xylosoxidans is typically isolated from pulmonary sources, presenting as pneumonia in immunosuppressed individuals. We describe a novel clinical presentation of A. xylosoxidans infection presenting as multiple spiculated, pulmonary nodules mimicking cancer for which the patient underwent a wedge resection of the lung for diagnosis and staging of presumptive cancer.