Project description:Pseudomonas chlororaphis strain 30-84 is an effective biological control agent against take-all disease of wheat. In this study, we conducted an RNA-seq analysis by comparing the wild type strain with a Hfe deficient mutant. RNA-seq analysis identified over 900 genes differentially regulated by Hfq. A total of 4 samples were analyzed in AB medium + 2% casamino acids, Pseudomonas chlororaphis wild type strain (2 replicates); Pseudomonas chlororaphis ZN mutant (2 replicates).
Project description:Pseudomonas chlororaphis strain 30-84 is an effective biological control agent against take-all disease of wheat. In this study, we conducted an RNA-seq analysis by comparing the wild type strain with a Hfe deficient mutant. RNA-seq analysis identified over 900 genes differentially regulated by Hfq.
Project description:Pseudomonas chlororaphis strain 30-84 is an effective biological control agent against take-all disease of wheat. Phenazines, bacterial secondary metabolites produced by 30-84, are essential for 30-84 to inhibit fungal pathogens, form biofilms, and effectively colonize the rhizosphere. However, how the bacteria themselves respond to phenazines remains unknown. In this study, we conducted an RNA-seq analysis by comparing the wild type strain with a phenazine deficient mutant. RNA-seq analysis identified over 200 genes differentially regulated by phenazines. Consistent with previous findings in Pseudomonas aeruginosa PAO1, phenazines positively contribute to the expression of their own biosynthetic genes. Moreover, phenazine regulatory genes including the phzI/phzR quorum sensing system and the rpeB response regulatory were also expressed at high levels in the presence of phenazines. Besides phenazine biosynthesis and regulatory genes, genes involved in secondary metabolism, exopoysaccharide production and iron uptake as well as amino acid transport were identified as the major components under phenazine control, including many novel genes. We have also demonstrated that mutation of the primary siderophore gene pvdA resulted in up-regulation of phenazine genes when grown in iron-limiting media. These findings implicate phenazines as signaling molecules to regulate gene expression and hence alter metabolism in P. chlororaphis strain 30-84. A total of 4 samples were analyzed in AB medium + 2% casamino acids, Pseudomonas chlororaphis wild type strain (2 replicates); Pseudomonas chlororaphis ZN mutant (2 replicates).
Project description:Pseudomonas chlororaphis strain 30-84 is an effective biological control agent against take-all disease of wheat. In this study, we conducted an RNA-seq analysis by comparing the wild type strain, PCA and O star with a phenazine deficient mutant. RNA-seq analysis identified over 800 genes differentially regulated by phenazines.
Project description:To better understand transcriptional changes in the SCV, RNA-seq analyses were conducted by comparing a SCV mutant to the wild-type. Transcriptomic profiling identified more than 1000 genes indicating a significant reprograming of gene expression in the SCV mutant. In accordance with observed phenotypes, genes involved in metabolism functions, motility and phenazine production were downregulated; whereas, oxidative stress and iron uptake genes were significantly upregulated. A total of 5 samples were analyzed in AB medium + 2% casamino acids, Pseudomonas chlororaphis wild type strain (3 replicates); Pseudomonas chlororaphis SCV mutant (2 replicates).
Project description:The GacS/GacA two component regulatory system globally activates the production of secondary metabolites including phenazines in Pseudomonas chlororaphis 30-84. To better understand the regulatory role of the Gac system, we conducted RNA-seq analyses to determine the regulon of the response regulator GacA. Transcriptome analyses identified over 700 genes differentially regulated by GacA. Consistent with our previous findings, phenazine biosynthetic genes were significantly down-regulated in a gacA mutant. The expression levels of phenazine regulatory genes such as phzI, phzR, iopA, iopB, rpoS and pip were also decreased. Moreover, the expression of three none-coding RNAs (ncRNAs) including rsmX, rsmY and rsmZ was significantly decreased by gacA mutation consistent with the presence of GacA binding sites in their promoters. Our results also demonstrated that over-expression of rsmZ from a non-gac regulated promoter resulted in the restoration of AHL and phenazine production as well as the expression of other secondary metabolites in gac mutants. The role of RsmA and RsmE in phenazine production was also investigated. Over-expression of rsmE, but not rsmA, resulted in decreased AHL production and phenazine gene expression in P. chlororaphis. Consistently, a mutation in rsmE bypassed the requirement of GacA in phenazine gene expression. On the contrary, constitutive expression of the phzI/phzR quorum sensing system was not able to rescue phenazine production in the gacA mutant indicating the direct impact of Gac system on the transcript stability of phenazine biosynthetic genes. Together, these results indicate that the Gac system regulates phenazine production at multiple levels and exerts its positive effect on AHL and phenazine biosynthesis via RsmZ and RsmE. A model is proposed to illustrate the GacA regulon in P. chlororaphis 30-84. A total of 6 samples were analyzed in AB medium + 2% casamino acids, Pseudomonas chlororaphis wild type strain (3 replicates); Pseudomonas chlororaphis gacA mutant (3 replicates).
Project description:Pseudomonas chlororaphis strain 30-84 is an effective biological control agent against take-all disease of wheat. Phenazines, bacterial secondary metabolites produced by 30-84, are essential for 30-84 to inhibit fungal pathogens, form biofilms, and effectively colonize the rhizosphere. However, how the bacteria themselves respond to phenazines remains unknown. In this study, we conducted an RNA-seq analysis by comparing the wild type strain with a phenazine deficient mutant. RNA-seq analysis identified over 200 genes differentially regulated by phenazines. Consistent with previous findings in Pseudomonas aeruginosa PAO1, phenazines positively contribute to the expression of their own biosynthetic genes. Moreover, phenazine regulatory genes including the phzI/phzR quorum sensing system and the rpeB response regulatory were also expressed at high levels in the presence of phenazines. Besides phenazine biosynthesis and regulatory genes, genes involved in secondary metabolism, exopoysaccharide production and iron uptake as well as amino acid transport were identified as the major components under phenazine control, including many novel genes. We have also demonstrated that mutation of the primary siderophore gene pvdA resulted in up-regulation of phenazine genes when grown in iron-limiting media. These findings implicate phenazines as signaling molecules to regulate gene expression and hence alter metabolism in P. chlororaphis strain 30-84.