Project description:Next-generation sequencing facilitates quantitative analysis of the transcriptomes of FOXG1 100% dosage GABA interneurons, FOXG1 60% dosage GABA interneurons, FOXG1 30% dosage GABA interneurons, and FOXG1 0% dosage GABA interneurons derived from human embryonic stem cells. We report a genetic manipulation system that enable precise dosage control of FOXG1 protein in human pluripotent stem cells (hPSCs). Using this system, we explored how the various reduced dosage affect human ventrol GABA interneuron development. We employed RNA seq on hPSC-derived GABA interneurons (day 60) to invest the expression pattern under different FOXG1 dosage conditions. RNA-Seq on GABA interneurons (Day 60) indicates that compared to the FOXG1 100% group, variable insufficiency of FOXG1 produces more than 1000 differently expressed genes (DEGs), and more DEGs in the group with less FOXG1 dosage. Heat map on Pearson Correlation indicates that groups with more discriminated FOXG1 exhibit much weaker correlation. Venn diagram reveals that each group has a set of distinct DEGs, suggesting that each FOXG1 protein dosage could results in different expression pattern during differentiation. The DEGs can be divided into two clusters, with one showing dosage-dependent regulation by FOXG1 and the other one typical binary. Key regulatory genes for GABA interneuron induction (NKX2-1, NKX6-2, GAD1, etc.) and for functional GABAergic-specific synapse formation (GABBR1, GABRA1, GABRB1, GABRG1, GABRQ, SHANK1, etc.) are down regulated along with reduction of FOXG1 protein.
Project description:Dysregulated choline metabolism is a well-known feature of breast cancer, but the underlying mechanisms are not fully understood. In this study, the metabolomic and transcriptomic characteristics of a large panel of human breast cancer xenograft models were mapped, with focus on choline metabolism. Methods: Tumor specimens from 34 patient-derived xenograft models were collected and divided in two. One part was examined using high-resolution magic angle spinning (HR-MAS) MR spectroscopy while another part was analysed using gene expression microarrays. Expression data of genes encoding proteins in the choline metabolism pathway were analysed and correlated to the levels of choline (Cho), phosphocholine (PCho) and glycerophosphocholine (GPC) using Pearson’s correlation analysis. For comparison purposes, metabolic and gene expression data were collected from human breast tumors belonging to corresponding molecular subgroups. Results: Most of the xenograft models were classified as basal-like (N=19) or luminal B (N=7). These two subgroups showed significantly different choline metabolic and gene expression profiles. The luminal B xenografts were characterized by a high PCho/GPC ratio while the basal-like xenografts were characterized by highly variable PCho/GPC ratio. Also, Cho, PCho and GPC levels were correlated to expression of several genes encoding proteins in the choline metabolism pathway, including choline kinase alpha (CHKA) and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5). These characteristics were similar to those found in human tumor samples. Discussion: The higher PCho/GPC ratio found in luminal B compared with most basal-like breast cancer xenograft models and human tissue samples do not correspond to results observed from in vitro studies. It is likely that microenvironmental factors play a role in the in vivo regulation of choline metabolism. Cho, PCho and GPC were correlated to different choline pathway-encoding genes in luminal B compared with basal-like xenografts, suggesting that regulation of choline metabolism may vary between different breast cancer subgroups. The concordance between the metabolic and gene expression profiles from xenograft models with breast cancer tissue samples from patients indicates that these xenografts are representative models of human breast cancer and represent relevant models to study tumor metabolism in vivo. Gene expression was measured in 30 human breast cancer xenografts, one sample from each model
Project description:E11 causes acute fulminant hepatitis in newborns. We investigated the pathological changes of different tissues from premature male twins who died due to E11 infection. The E11 expression level was higher in the liver than in other tissues. IP10 was upregulated in liver tissue in the patient group, and might be regulated by IFNAR and IRF7, whereas IFNα was regulated by IFNAR or IRF5.
Project description:Fibroblast growth factors (FGFs) include a large family of growth factors that play a critical role in maintaining bone homeostasis, but the specific role of its members such as FGF7 does not well understand. Osteoblasts are a kind of major cells essential for bone formation. Osteoblasts interact with one another to create the unique structure of osteons. The well-connected osteons constitute the cortical bone. As an early osteocyte marker that triggers actin cytoskeleton dynamics, E11 is essential for osteoblasts' dendrites formation. However, the upstream which regulates E11 is mainly unknown. The purpose of this study was to examine the influence of FGF7 on the expression and the distribution of E11 in osteoblasts, which mediated osteoblasts' processes formation and gap junctional intercellular communication (GJIC) partly through connexin43 (Cx43). We first demonstrated that FGF7 increased the expression of E11 in osteoblasts. We then showed that FGF7 promoted osteoblasts' dendrites elongation and functional gap junctions formation. Furthermore, E11 interacted directly with Cx43 in primary osteoblasts. MAPK pathway and PI3K-AKT pathway were involved in the effect of FGF7. Our results shed light on the unique role of FGF7 on osteoblasts, which may indicate that FGF7 plays a more significant role in the later stages of bone development and homeostasis.
Project description:Behçet's disease is a kind of variable vessel vasculitis (VVV) and inflammatory systematic disease affecting various organs of the body. The cause of the disease is idiopathic but is most commonly genetic in origin. A positive skin prick test (dermatographia), genital sores, eye irritation, skin sores, and at least three episodes of mouth sores in a year confirm the diagnosis. Treatment may include immunosuppressive agents, immune modulators, and biological markers such as corticosteroids, immunosuppressants, and antibodies. We report a case of a 23-year-old male patient, presented in an outpatient clinic in a tertiary care eye hospital located in Pakistan. The patient reported sudden loss of vision in one eye and graduate loss of vision in the other eye. Ocular and systemic investigations were performed to correlate with clinical findings to reach a diagnosis. The patient was managed symptomatically and was put on corticosteroids. Our hospital is a research and postgraduate educational institution that deals with complex eye diseases. The range of investigations and clinical exams helped clinical decision-makers in evaluating the patient's diagnosis.
Project description:Prenatal alcohol exposure (PAE) is linked to elevated risk for systemic adult-onset diseases like hypertension, impaired glucose and immune regulation, and in animal models, to impaired recovery from acute onset diseases like cerebrovascular ischemic stroke. Recent evidence suggests that the gastrointestinal system rapidly becomes dysbiotic following cerebrovascular stroke, resulting in systemic inflammation. We hypothesized that a history of PAE would modify the systemic effects of stroke, and transduce exposure-dependent transcriptomic changes in downstream sentinel tissues of the enteric portal circulation that have previously been linked to biobehavioral outcomes in rodent PAE models. Pregnant Sprague Dawley rats were exposed to repeated episodes of vaporized ethanol or room air from gestational day 8 to 19. At 5 months, progeny from each treatment condition were subjected to unilateral endothelin-1 induced occlusion of the middle cerebral artery and outcomes evaluated after 2 days while other progeny stayed stroke-naïve. Stroke induced disabilities were assessed by behavioral assays (adhesive removal, Vibrissae evoked fore-limb placement, circling) and infarct size. The mesenteric adipose tissue and liver transcriptomes were assessed by sequencing, from age-matched stroke-exposed and stroke-naïve offspring. In stroke-naïve animals, pathway analysis identified rRNA processing as downregulated and citric acid cycle as upregulated in mesenteric adipose. Weighted gene correlation network analysis (WGCNA) identified, in the liver of stoke-naïve animals, a moderate but significant correlation between PAE status and necroptosis, a proinflammatory form of programmed cell death (Pearson’s r=0.554, p<0.05). Two days after a stroke, PAE rats exhibited worse neurological scores compared to controls (p<0.05). WGCNA after stroke identified an adipose gene network associated with B cell differentiation and NF-kappa B signaling as moderately correlated with post-stroke neurological function (Pearson's r=0.52, p=0.05). Post-stroke WGCNA also identified a liver proinflammatory gene network strongly correlated with post-stroke neurological function (Pearson's r=-0.63, p<0.01). PAE persistently alters the transcriptome of afferent tissue targets of enteric circulation in adult rat offspring. Moreover, PAE-linked enteric inflammation is correlated to worse outcomes following cerebrovascular ischemic stroke in adulthood. Enteric disturbances may mediate adverse brain health outcomes due to PAE in adulthood.
Project description:E11/podoplanin is critical in the early stages of osteoblast-to-osteocyte transitions (osteocytogenesis), however, the upstream events which regulate E11 expression are unknown. The aim of this study was to examine the effects of FGF-2 on E11-mediated osteocytogenesis and to reveal the nature of the underlying signaling pathways regulating this process. Exposure of MC3T3 osteoblast-like cells and murine primary osteoblasts to FGF-2 (10 ng/ml) increased E11 mRNA and protein expression (p < 0.05) after 4, 6, and 24 hr. FGF-2 induced changes in E11 expression were also accompanied by significant (p < 0.01) increases in Phex and Dmp1 (osteocyte markers) expression and decreases in Col1a1, Postn, Bglap, and Alpl (osteoblast markers) expression. Immunofluorescent microscopy revealed that FGF-2 stimulated E11 expression, facilitated the translocation of E11 toward the cell membrane, and subsequently promoted the formation of osteocyte-like dendrites in MC3T3 and primary osteoblasts. siRNA knock down of E11 expression achieved >70% reduction of basal E11 mRNA expression (p < 0.05) and effectively abrogated FGF-2-related changes in E11 expression and dendrite formation. FGF-2 strongly activated the ERK signaling pathway in osteoblast-like cells but inhibition of this pathway did not block the ability of FGF-2 to enhance E11 expression or to promote acquisition of the osteocyte phenotype. The results of this study highlight a novel mechanism by which FGF-2 can regulate osteoblast differentiation and osteocyte formation. Specifically, the data suggests that FGF-2 promotes osteocytogenesis through increased E11 expression and further studies will identify if this regulatory pathway is essential for bone development and maintenance in health and disease.
Project description:Dysregulated choline metabolism is a well-known feature of breast cancer, but the underlying mechanisms are not fully understood. In this study, the metabolomic and transcriptomic characteristics of a large panel of human breast cancer xenograft models were mapped, with focus on choline metabolism. Methods: Tumor specimens from 34 patient-derived xenograft models were collected and divided in two. One part was examined using high-resolution magic angle spinning (HR-MAS) MR spectroscopy while another part was analysed using gene expression microarrays. Expression data of genes encoding proteins in the choline metabolism pathway were analysed and correlated to the levels of choline (Cho), phosphocholine (PCho) and glycerophosphocholine (GPC) using Pearson’s correlation analysis. For comparison purposes, metabolic and gene expression data were collected from human breast tumors belonging to corresponding molecular subgroups. Results: Most of the xenograft models were classified as basal-like (N=19) or luminal B (N=7). These two subgroups showed significantly different choline metabolic and gene expression profiles. The luminal B xenografts were characterized by a high PCho/GPC ratio while the basal-like xenografts were characterized by highly variable PCho/GPC ratio. Also, Cho, PCho and GPC levels were correlated to expression of several genes encoding proteins in the choline metabolism pathway, including choline kinase alpha (CHKA) and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5). These characteristics were similar to those found in human tumor samples. Discussion: The higher PCho/GPC ratio found in luminal B compared with most basal-like breast cancer xenograft models and human tissue samples do not correspond to results observed from in vitro studies. It is likely that microenvironmental factors play a role in the in vivo regulation of choline metabolism. Cho, PCho and GPC were correlated to different choline pathway-encoding genes in luminal B compared with basal-like xenografts, suggesting that regulation of choline metabolism may vary between different breast cancer subgroups. The concordance between the metabolic and gene expression profiles from xenograft models with breast cancer tissue samples from patients indicates that these xenografts are representative models of human breast cancer and represent relevant models to study tumor metabolism in vivo.
Project description:To assess the value of using pleth variability index(PVI) to monitor the patient’s intra-operative volume status continuously by observing the application of stroke volume variation(SVV) and PVI and their correlation in patients undergoing intestinal tumor surgeries.