Project description:The gut microbiota promotes immune system development in early life, but the interactions between the gut metabolome and immune cells in the neonatal gut remains largely undefined. Here, we demonstrate that the neonatal gut is uniquely enriched with neurotransmitters, including serotonin; specific gut bacteria produce serotonin directly while downregulating monoamine oxidase A to limit serotonin breakdown. Serotonin directly signals to T cells to increase intracellular indole-3-acetaldehdye to inhibit mTOR activation and thereby promotes the differentiation of regulatory T cells, both ex vivo and in vivo in the neonatal intestine. Oral gavage of serotonin into neonatal mice leads to long-term T cell-mediated antigen-specific immune tolerance towards both dietary antigens and commensal bacteria. Together, our study has uncovered an important role for unique gut bacteria to increase serotonin availability in the neonatal gut and a novel function of gut serotonin to shape T cell response to dietary antigens and commensal bacteria to promote immune tolerance in early life.
Project description:The gut microbiota promotes immune system development in early life, but the interactions between the gut metabolome and immune cells in the neonatal gut remains largely undefined. Here, we demonstrate that the neonatal gut is uniquely enriched with neurotransmitters, including serotonin; specific gut bacteria produce serotonin directly while downregulating monoamine oxidase A to limit serotonin breakdown. Serotonin directly signals to T cells to increase intracellular indole-3-acetaldehdye to inhibit mTOR activation and thereby promotes the differentiation of regulatory T cells, both ex vivo and in vivo in the neonatal intestine. Oral gavage of serotonin into neonatal mice leads to long-term T cell-mediated antigen-specific immune tolerance towards both dietary antigens and commensal bacteria. Together, our study has uncovered an important role for unique gut bacteria to increase serotonin availability in the neonatal gut and a novel function of gut serotonin to shape T cell response to dietary antigens and commensal bacteria to promote immune tolerance in early life.
Project description:The gut microbiota promotes immune system development in early life, but the interactions between the gut metabolome and immune cells in the neonatal gut remains largely undefined. Here, we demonstrate that the neonatal gut is uniquely enriched with neurotransmitters, including serotonin; specific gut bacteria produce serotonin directly while downregulating monoamine oxidase A to limit serotonin breakdown. Serotonin directly signals to T cells to increase intracellular indole-3-acetaldehdye to inhibit mTOR activation and thereby promotes the differentiation of regulatory T cells, both ex vivo and in vivo in the neonatal intestine. Oral gavage of serotonin into neonatal mice leads to long-term T cell-mediated antigen-specific immune tolerance towards both dietary antigens and commensal bacteria. Together, our study has uncovered an important role for unique gut bacteria to increase serotonin availability in the neonatal gut and a novel function of gut serotonin to shape T cell response to dietary antigens and commensal bacteria to promote immune tolerance in early life.
Project description:Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a high density custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.
Project description:This SuperSeries is composed of the following subset Series: GSE25572: Depolymerization of plant cell wall glycans by symbiotic human gut bacteria (Bacteroides thetaiotaomicron) GSE25575: Depolymerization of plant cell wall glycans by symbiotic human gut bacteria (Bacteroides ovatus) Refer to individual Series
Project description:Background: Probiotic-like bacteria treatment has been described to be associated with gut microbiota modifications. Goal: To decipher if the effects of the tested probiotic-like bacteria are due to the bacteria itself or due to the effects of the bacteria on the gut microbiota. Methodology: In this study, gut microbiota has been analyzed from feces samples of subjects with metabolic syndrome and treated with one of the 2 tested probiotic-like bacteria or with the placebo during 3months.
Project description:Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a high density custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals. Fecal samples were collected from eight female subjects. Three were obese subjects of BMI kg m-2: 35, 46.8 and 51.3, respectively; age: 42, 21 and 65 years old, respectively. Three were anorexic women of BMI kg m-2: 9.8, 10 and 13.7, respectively; age: 19, 23 and 49 years old, respectively. Finally, two fecal samples from lean women of BMI kg m-2: 18.6 and 23.42 were analyzed.
Project description:Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the inflammatory disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that a substantial amount of uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here we identify a gene cluster, widely distributed in the gut microbiome, that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids such as acetate, lactate and butyrate. Ablation of the microbiota in uricase-deficient mice causes profound hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.
Project description:We analyzed the effects of antibiotics using a popular model of gut microbiota depletion in mice by a cocktail of antibiotics. We combined intestinal transcriptome together with metagenomic analysis of the gut microbiota to develop a new bioinformatics approach that probes the links between microbial components and host functions. We found that most antibiotic-induced alterations can be explained by three factors: depletion of the microbiota; direct effects of antibiotics on host tissues; and the effects of remaining antibiotic-resistant microbes. While microbe depletion led to down-regulation of immunity, the two other factors primarily inhibited mitochondrial gene expression and amounts of active mitochondria, and induced cell death. By reconstructing and analyzing a transkingdom network, we discovered that these toxic effects were mediated by virulence/quorum sensing in antibiotic-resistant bacteria. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series
Project description:The host genotype has been proposed to contribute to individually composed bacterial communities in the gut. To provide deeper insight into interactions between gut bacteria and their host, we associated germ-free C3H and C57BL/10 mice with intestinal bacteria from a C57BL/10 donor mouse. Analysis of microbiota similarity between the experimental animals with denaturing gradient gel electrophoresis (DGGE) 13 weeks after association revealed the development of a mouse strain specific microbiota. Gene expression in the colonic mucosa was analyzed with a microarray approach taking advantage of a modified Affymetrix mouse genome chip. We detected 202 genes whose expression differed significantly by a factor of < 2. Application of bioinformatics tools demonstrated that functional terms including signaling/secretion, lipid degradation/catabolism, guanine nucleotide/guanylate binding and immune response were significantly enriched in differentially expressed genes. We had a closer look at the 56 genes with expression differences of < 4 and observed a higher expression in C57BL/10 mice of the genes coding for toll-like receptor 1 (4-fold) and angiogenin 4 (33-fold) which are involved in the recognition and response to gut bacteria. In contrast, a 70-fold higher expression of the phospholipase A2, group IIA-encoding gene (Pla2g2a) was detected in C3H mice. In addition, a number of interferon-inducible genes were higher expressed in C3H than in C57BL/10 mice including Gbp1 (18-fold), Mal (7-fold), Oasl2 (7-fold), Ifi202b (7-fold), Rtp4 (6-fold), Ly6g6c (5-fold), Ifi27l2a (5-fold), Usp18 (5-fold), Ifit1 (5-fold), Ifi44 (4-fold), and Ly6g (4-fold) indicating that these cytokines play an essential role in microbiota regulation. However, genes coding for interferons, their receptors or factors involved in interferon signaling pathways were not differentially expressed between the two mouse strains. Taken together, our study confirms that the host genotype is involved in the establishment of host-specific bacterial communities in the gut. Based on expression differences after colonization with the same bacterial inoculum, we propose that Pla2g2a and interferon-dependent genes may contribute to this phenomenon. Total RNA was extracted from the colonic mucosa and hybridization was performed using 12.5M-BM- M-bM-^@M-^SM-BM- 20M-BM- M-BM-5g of cDNA on a customized Affymetrix nugomm 1a520177 chip.