Project description:Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle
Project description:Identification of a p-coumarate degradation regulon in Rhodopseudomonas palustris using Xpression, an integrated tool for prokaryotic RNA-seq data processing
Project description:Palustrisredoxin reductase from Rhodopseudomonas palustris CGA009, a member of the oxygenase-coupled NADH-dependent ferredoxin reductase (ONFR) family, catalyzes electron transfer from NADH to ferredoxins. It is an essential component of the cytochrome P450 systems in R. palustris CGA009, a model organism with diverse metabolic pathways. Here, the crystallization of palustrisredoxin reductase is reported. The crystals belong to the trigonal space group P3(2)21, with unit-cell parameters a = 107.5, b = 107.5, c = 69.9 A, and diffract to 2.2 A resolution on a synchrotron source.
Project description:The purple bacterium Rhodopseudomonas palustris is a model organism for dissecting the energy and electron transfer processes that have evolved in phototrophic organisms. This bacterium is of particular interest because, in addition to driving its metabolism via solar energy capture, it is capable of nitrogen and carbon dioxide fixation, producing hydrogen and utilising a wide range of organic compounds. Understanding these processes underpins the potential exploitation of Rhodopseudomonas palustris for synthetic biology, biohydrogen production and bioremediation, for example. Like other purple bacteria, Rhodopseudomonas palustris has 2 light-harvesting (LH) systems: LH1 and LH2. The former has already been extensively characterised by X-ray crystallography and cryo-EM. The aim of this proteomics project is to provide complementary information to support the cryo-EM mapping of LH2 structure.