Project description:Changing the somatic cell transcriptome to a pluripotent state using exogenous reprogramming factors needs transcriptional co-regulators that help activate or suppress gene expression and rewrite the epigenome. Here, we show that reprogramming-specific engagement of the NCoR/SMRT co-repressor complex at key pluripotency loci creates an epigenetic block to reprogramming. HDAC3 executes the repressive function of NCoR/SMRT in reprogramming by inducing histone deacetylation at these loci. Recruitment of NCoR/SMRT-HDAC3 to pluripotency genes is facilitated by all 4 Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) but mostly by c-MYC. Class IIa HDACs further potentiate this recruitment by interacting with both the reprogramming factors and NCoR/SMRT. Consequently, depleting NCoR/SMRT-HDAC3 function enables high efficiency of reprogramming, while elevating NCoR/SMRT-HDAC3 recruitment at pluripotency loci by over-expressing constitutively active class IIa HDACs derails it. Our findings thus uncover an unexpected epigenetic mechanism involving c-MYC, whose manipulation greatly enhances reprogramming efficiency.
Project description:ChIP-seq of mouse embryonic fibroblast-adipose like cell line 3T3-L1 to identify binding sites of NCoR1 and SMRT following induction of differentiation, and RNA Pol-II after SMRT knock down
Project description:Using ChIP-seq, we reveal the SMRT and NCoR co-repressor cistromes, which each consist of over 30,000 half-shared binding sites. Moreover, we identify Bcl6-bound sub-cistromes for each co-repressor, which are strongly concentrated on NF-κB-driven inflammatory and tissue remodeling genes. These results reveal a critical role for Bcl6 and its corepressors SMRT and NCoR in the prevention of atherosclerosis and chronic inflammation. Identification of SMRT and NCoR binding sites in wild-type and Bcl6 knockout primary bone-marrow derived macrophages
Project description:Changing the somatic cell transcriptome to a pluripotent state using exogenous reprogramming factors needs transcriptional co-regulators that help activate or suppress gene expression and rewrite the epigenome. Here, we show that reprogramming-specific engagement of the NCoR/SMRT co-repressor complex at key pluripotency loci creates an epigenetic block to reprogramming. HDAC3 executes the repressive function of NCoR/SMRT in reprogramming by inducing histone deacetylation at these loci. Recruitment of NCoR/SMRT-HDAC3 to pluripotency genes is facilitated by all 4 Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) but mostly by c-MYC. Class IIa HDACs further potentiate this recruitment by interacting with both the reprogramming factors and NCoR/SMRT. Consequently, depleting NCoR/SMRT-HDAC3 function enables high efficiency of reprogramming, while elevating NCoR/SMRT-HDAC3 recruitment at pluripotency loci by over-expressing constitutively active class IIa HDACs derails it. Our findings thus uncover an unexpected epigenetic mechanism involving c-MYC, whose manipulation greatly enhances reprogramming efficiency.