Project description:Genome editing was conducted on a t(3;8) K562 model to investigate the effects of deleting different modules or CTCF binding sites within the MYC super-enhancer. To check mutations after targeting with CRISPR-Cas9 we performed amplicon sequencing using the Illumina PCR-based custom amplicon sequencing method using the TruSeq Custom Amplicon index kit (Illumina). The first PCR was performed using Q5 polymerase (NEB), the second nested PCR with KAPA HiFi HotStart Ready mix (Roche). Samples were sequenced paired-end (2x 250bp) on a MiSeq (Illumina).
Project description:MAGE-seq amplicon data from the paper RNA structural determinants of optimal codons revealed by MAGE-seq in Cell Systems 2016 by Kelsic, Chung, Cohen, Park, Wang & Kishony. Data contains read counts for PCR amplicons of the Escherichia coli gene infA: 1) Single codon mutants tiling along the entire gene, with timepoints from growth doublings in rich and minimal medias. 2) Codon pair mutants for positions at the beginning of the gene with timepoints for growth doublings in rich media. 3) Mutations in a hairpin of the 5' UTR for growth in rich media.
Project description:Amplicon-based targeted re-sequencing analysis was performed in the patient-derived gliobastoma cell culture samples. For this purpose, genomic DNA (gDNA) was isolated and DNA libraries were prepared using the TruSeq Custom Amplicon Low Input (Illumina, Inc.) technology. By this, a pool of 375 amplicons was generated for each single sample in order to enrich for the target genes ATRX1, EGFR, IDH1, NF1, PDGFRA, PIK3CG, PIK3R1, PTEN, RB1 and TP53. Sequencing was performed on the Illumina MiSeq® next generation sequencing system (Illumina Inc.) and its 2 x 250 bp paired-end v2 read chemistry. The resulting reads were quality controlled and mapped against the human reference genome (hg19). For all samples, sequence variations of the amplified regions of interest in comparison to the human reference sequence were identified and filtered based on reliability.
Project description:CEH-60 binding profile by comparison of DNA methylation of a C. elegans strain expression ceh-60::dam to a control strain expressing gfp::dam. Sequencing libraries prepared using NEBNext Singleplex oligos for Illumina®. Data analysis performed with GeneDamIDseq (Sharma, Ritler, and Meister 2016).
Project description:Phytoplankton and bacteria form the base of marine ecosystems and their interactions drive global biogeochemical cycles. The effect of bacteria and bacteria-produced compounds on diatoms range from synergistic to pathogenic and can affect the physiology and transcriptional patterns of the interacting diatom. Here, we investigate physiological and transcriptional changes in the marine diatom Thalassiosira pseudonana induced by extracellular metabolites of a known antagonistic bacterium Croceibacter atlanticus. Mono-cultures of C. atlanticus released compounds that inhibited diatom cell division and elicited a distinctive phenotype of enlarged cells with multiple plastids and nuclei, similar to what was observed when the diatom was co-cultured with the live bacteria. The extracellular C. atlanticus metabolites induced transcriptional changes in diatom pathways that include recognition and signaling pathways, cell cycle regulation, carbohydrate and amino acid production, as well as cell wall stability. Phenotypic analysis showed a disruption in the diatom cell cycle progression and an increase in both intra- and extracellular carbohydrates in diatom cultures after bacterial exudate treatment. The transcriptional changes and corresponding phenotypes suggest that extracellular bacterial metabolites, produced independently of direct bacterial-diatom interaction, may modulate diatom metabolism in ways that support bacterial growth.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:To compare the impact of CRISPR-egineered R175 TP53 mutant variants in HCT116 and H460 cells, mutations at the amino acid position 175 were generated systematically by CRISP/Cas9 editing. Here, genomic amplicon regions covering the TP53 Exons 5 were sequenced via targeted sequencing.