Project description:As our results suggested that metformin acts to limit mitochondrial ROS and calcium-mediated activation of IL-6, we reasoned it would likely affect other processes in alveolar macrophages triggered by exposure to particulate matter (PM). Therefore, we treated mice with metformin in the drinking water for 24 hours before we instilled PM intratracheally. We then flow-sorted alveolar macrophages from whole lung homogenates 24 hours later for transcriptomic analysis (RNA-Seq).
Project description:To test the effects of metformin on the human gut micorbiome, we fist collected human stool samples. We processed the samples in vitro culturing under anaerobic condition for 24 hours using the rapidAIM assay and either and cultured them with metformin, or DMSO as a control. We know that metformin can alter the human gut microbiome and were interested in better analyzing which functional proceses were altered.
Project description:Idelalisib is a phosphatidylinositol 3-delta kinase inhibitor that has shown good efficacy in treating some hematologic malignancies. Rare, but potentially serious liver toxicity was associated with idelalisib use in clinical trials. The objective of this study was to evaluate the idelalisib-induced activation of stress response pathways in human hepatocytes to inform mechanisms of liver injury observed in the clinic Primary human hepatocytes from three donors were sandwich cultured and assayed for global gene expression across 5 concentrations of idelalisib after a 24 h exposure. The most significantly enriched pathway among genes upregulated in response to idelalisib was “Endoplasmic Reticulum Stress”. These data suggest that oxidative stress is a dominant mechanism contributing to liver injury associated with idelalisib.
Project description:Despite being the frontline therapy for Type 2 diabetes, the mechanisms of action of the biguanide drug metformin are still being discovered. In particular, the detailed molecular interplays between the AMPK and the mTORC1 pathway in the hepatic benefits of metformin are still ill-defined. Metformin-dependent activation of AMPK classically inhibits mTORC1 via TSC/RHEB. But several lines of evidence suggest additional mechanisms at play in metformin inhibition of mTORC1. Here we investigated the role of direct AMPK-mediated serine phosphorylation of RAPTOR in a new RaptorAA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. Metformin treatment of primary hepatocytes and intact murine liver requires AMPK regulation of both RAPTOR and TSC2 to fully inhibit mTORC1, and this regulation is critical for the translational response to metformin.
Project description:Despite being the frontline therapy for Type 2 diabetes, the mechanisms of action of the biguanide drug metformin are still being discovered. In particular, the detailed molecular interplays between the AMPK and the mTORC1 pathway in the hepatic benefits of metformin are still ill-defined. Metformin-dependent activation of AMPK classically inhibits mTORC1 via TSC/RHEB. But several lines of evidence suggest additional mechanisms at play in metformin inhibition of mTORC1. Here we investigated the role of direct AMPK-mediated serine phosphorylation of RAPTOR in a new RaptorAA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. Metformin treatment of primary hepatocytes and intact murine liver requires AMPK regulation of both RAPTOR and TSC2 to fully inhibit mTORC1, and this regulation is critical for the transcriptional response to metformin. Transcriptionally, AMPK and mTORC1 were both important for regulation of anabolic metabolism and inflammatory programs triggered by metformin treatment.
Project description:This study provides an evaluation of changes in gene expression associated with methapyrilene treatment of rat hepatocytes in vitro. Primary rat hepatocytes were treated for 24 and 48 hours with two doses (3 uM and 100 uM) of methaphyriline and 1% DMSO vehicle control. Five replicates of each treatment were performed. Cells were then extracted and RNA processed for microarray analysis.