Project description:Understanding the genetic basis of adaptation to novel environments remains one of the major challenges confronting evolutionary biologists. While newly developed genomic approaches hold considerable promise for addressing this overall question, the relevant tools have not often been available in the most ecologically interesting organisms. Our study organism, Drosophila mojavensis, is a cactophilic Sonoran Desert endemic utilizing four different cactus hosts across its geographic range. Its well-known ecology makes it an attractive system in which to study the evolution of gene expression during adaptation. As a cactophile, D. mojavensis oviposits in the necrotic tissues of cacti, therefore exposing larvae and even adults to the varied and toxic compounds of rotting cacti. We have developed a cDNA microarray of D. mojavensis to examine gene expression associated with cactus host use. Using a population from the Baja California population we examined gene expression differences of third instar larvae when reared in two chemically distinct cactus hosts, agria (Stenocereus gummosus, native host) vs. organpipe (S. thurberi, alternative host). We have observed differential gene expression associated with cactus host use in genes involved in metabolism and detoxification. Keywords: host adaptation, stress response, detoxification
Project description:Understanding the genetic basis of adaptation to novel environments remains one of the major challenges confronting evolutionary biologists. While newly developed genomic approaches hold considerable promise for addressing this overall question, the relevant tools have not often been available in the most ecologically interesting organisms. Our study organism, Drosophila mojavensis, is a cactophilic Sonoran Desert endemic utilizing four different cactus hosts across its geographic range. Its well-known ecology makes it an attractive system in which to study the evolution of gene expression during adaptation. As a cactophile, D. mojavensis oviposits in the necrotic tissues of cacti, therefore exposing larvae and even adults to the varied and toxic compounds of rotting cacti. We have developed a cDNA microarray of D. mojavensis to examine gene expression associated with cactus host use. Using a population from the Baja California population we examined gene expression differences of third instar larvae when reared in two chemically distinct cactus hosts, agria (Stenocereus gummosus, native host) vs. organpipe (S. thurberi, alternative host). We have observed differential gene expression associated with cactus host use in genes involved in metabolism and detoxification. The experiment was composed of 5 sets of dye-flips (rep1-5). Larvae were reared in either necrotic agria or organpipe cactus tissues. They were then collected at the third instar stage and its total RNA extracted.
Project description:This SuperSeries is composed of the following subset Series: GSE35462: Genome-wide analysis of histone methylation reveals chromatin state-based regulation of host cellular gene expression induced by hepatitis B viruses (ChIP-Seq dataset) GSE35464: Genome-wide analysis of histone methylation reveals chromatin state-based regulation of host cellular gene expression induced by hepatitis B viruses (DGE dataset) Refer to individual Series
Project description:The RNA interference (RNAi) pathway is found in most eukaryotic lineages but curiously is absent in others, including that of Saccharomyces cerevisiae. Here, we show that reconstituting RNAi in S. cerevisiae causes loss of a beneficial dsRNA virus, known as killer virus. Incompatibility between RNAi and killer viruses extends to other fungal species, in that RNAi is absent in all species known to possess dsRNA killer viruses, whereas killer viruses are absent in closely related species that retained RNAi. Thus, the advantage imparted by acquiring and retaining killer viruses explains the persistence of RNAi-deficient species during fungal evolution.
Project description:In recent years, the roles of microRNAs playing in the regulation of influenza viruses replication caused researchers' much attenion. However, much work focused on the interactions between human, mice or chicken microRNAs with human or avian influenza viruses rather than the interactions of swine microRNAs and swine influenza viruses. To investigate the roles of swine microRNAs playing in the regulation of swine influenza A virus replication, the microRNA microarray was performed to identify which swine microRNAs were involved in swine H1N1/2009 influenza A virus infection.
Project description:Sewage samples were collected and concentrated for Human and animal viruses. Viruses were cultured on Buffalo Green Monkey Cells (BGMK) and their genomic DNA/RNA were extracted and labeled with Cy3 and Cy5 respectively. Labeled DNA/RNA were hybridized unto the array and signals generated were analyzed to indicate the presence of target viruses. Keywords: Detection of pathogens within environmental sample (Viruses) Environmental viruses were concentrated using organic flocculation with Beef Extract supplemented with glycine. Viruses were concentrated using 2 successive rounds of centrifugation and resuspended in Sodium Phosphate buffer. Viral nucleic acid was extracted, labeled and hybridized unto the microarray to determine the presence of target viruses within the sample.