Elucidating the regulatory elements for transcription termination and post-transcriptional processing in the Streptomyces clavuligerus genome
Ontology highlight
ABSTRACT: Elucidating the regulatory elements for transcription termination and post-transcriptional processing in the Streptomyces clavuligerus genome
Project description:We obtained genome-scale transcript 3' end termini information by term-seq in S. clavuligerus ATCC 27064, and transcription unit were determined by integration of other multi-omics data to elucidate the regulatory elements for transcription termination and post-transcriptional processing.
Project description:Identification of transcriptional regulatory elements in the GC-rich Streptomyces genome is essential for the production of novel biochemicals from secondary metabolite biosynthetic gene clusters (smBGCs). Despite many efforts to understand the regulation of transcription initiation in smBGCs, information on the regulation of transcription termination and posttranscriptional processing remains scarce. In this study, we identified the transcriptional regulatory elements in β-lactam antibiotic-producing Streptomyces clavuligerus ATCC 27064 by determining a total of 1,427 transcript 3'-end positions (TEPs) using the term-seq method. Termination of transcription was governed by three classes of TEPs, of which each displayed unique sequence features. The data integration with transcription start sites and transcriptome data generated 1,648 transcription units (TUs) and 610 transcription unit clusters (TUCs). TU architecture showed that the transcript abundance in TU isoforms of a TUC was potentially affected by the sequence context of their TEPs, suggesting that the regulatory elements of TEPs could control the transcription level in additional layers. We also identified TU features of a xenobiotic response element (XRE) family regulator and DUF397 domain-containing protein, particularly showing the abundance of bidirectional TEPs. Finally, we found that 189 noncoding TUs contained potential cis- and trans-regulatory elements that played a major role in regulating the 5' and 3' UTR. These findings highlight the role of transcriptional regulatory elements in transcription termination and posttranscriptional processing in Streptomyces sp.IMPORTANCEStreptomyces sp. is a great source of bioactive secondary metabolites, including antibiotics, antifungal agents, antiparasitic agents, immunosuppressant compounds, and other drugs. Secondary metabolites are synthesized via multistep conversions of the precursor molecules from primary metabolism, governed by multicomplex enzymes from secondary metabolite biosynthetic gene clusters. As their production is closely related with the growth phase and dynamic cellular status in response to various intra- and extracellular signals, complex regulatory systems tightly control the gene expressions related to secondary metabolism. In this study, we determined genome-wide transcript 3'-end positions and transcription units in the β-lactam antibiotic producer Streptomyces clavuligerus ATCC 27064 to elucidate the transcriptional regulatory elements in transcription termination and posttranscriptional processing by integration of multiomics data. These unique features, such as transcript 3'-end sequence, potential riboregulators, and potential 3'-untranslated region (UTR) cis-regulatory elements, can be potentially used to design engineering tools that can regulate the transcript abundance of genes for enhancing secondary metabolite production.
Project description:We obtained the high-quality genome sequence of S. clavuligerus ATCC 27064, and determined genome-wide TSSs. Then, RNA-Seq and ribosome profiling were additionally exploited to reveal fundamental regulatory elements for transcription and translation.
Project description:Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol_II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adapter protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1/COMPASS H3K4 methyltransferase and the nuclear Protein Phosphatase 1 (PP1) complexes to the initiating Pol_II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1 or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes, active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. 4C-seq was performed on two different viewpoints (TSSs of the genes Ccl2 and Jun) in BMDMs.
Project description:Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol_II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adapter protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1/COMPASS H3K4 methyltransferase and the nuclear Protein Phosphatase 1 (PP1) complexes to the initiating Pol_II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1 or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes, active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. Hi-C experiments on biological replicates of BMDMs
Project description:Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol_II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adapter protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1/COMPASS H3K4 methyltransferase and the nuclear Protein Phosphatase 1 (PP1) complexes to the initiating Pol_II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1 or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes, active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. 4C-seq was performed on four different viewpoints (either at the 5' or the 3' of the Mpeg1 and Lgals3 genes, indicated as sx or dx, respectively) in BMDMs. Experiments were carried out in cells containing either a short hairpin targeting Wdr82 or a scrambled as a control.
Project description:Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol_II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adapter protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1/COMPASS H3K4 methyltransferase and the nuclear Protein Phosphatase 1 (PP1) complexes to the initiating Pol_II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1 or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes, active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. total-mRNAs or 4sU-labeled RNAs from BMDMs, either untreated or treated for with lipopolysaccharide (LPS) for the indicated time. Experiments were carried out in cells containing either a short hairpin targeting either of these: 1) Wdr82; 2) Menin; or a scrambled as a control.
Project description:The objective was to analyze the differential expression between the control strain and S. clavuligerus::pimM. Experiment type Expression profiling by array
Project description:Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol_II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adapter protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1/COMPASS H3K4 methyltransferase and the nuclear Protein Phosphatase 1 (PP1) complexes to the initiating Pol_II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1 or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes, active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. polyA-mRNAs or 4sU-labeled RNAs from BMDMs, either untreated or treated for with lipopolysaccharide (LPS) for the indicated time. Experiments were carried out in cells containing either a short hairpin targeting either of these: 1) Wdr82; 2) Set1a+Set1b; 3) Pnuts; or the empty vector (LMP) or a scrambled as a control. When specified, cells were pre-treated with 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) in order to prevent RNA polymerase II elongation.
Project description:To increase production of the important pharmaceutical compounds, both mutagenesis approaches and rational engineering have been extensively applied. Mutagenesis approaches are most popular in industry, but their effects have not yet been studied very well. Here, we used microarrays to compare the transcriptomes of the S. clavuligerus wild type (ATCC 27064) strain and the DS48802 clavulanic acid high-producer strain, which has been obtained by classical strain improvement (mutagenesis). Streptomyces clavuligerus strains were grown in shake flasks. RNA was extracted after 70h and hybridized to microarrays.