Project description:Strawberry cultivation is associated with high mineral fertilizer doses and excessive use of chemical plant protection products. Based on previous research, we expected that chitin application to the growing medium will increase the nutrient availability and activate the plant’s systemic defense response, resulting in higher strawberry yields and less disease symptoms. We set up two experiments in which the temporal variability and differences in initial nutrient concentrations of the growing media were taken into account. Chitin induced the plant’s shoot biomass, explained by elevated N concentration in the growing medium and/or the attraction of plant-growth promoting fungal genera towards the plant root, such as Mortierella and Umbelopsis. The over-excessive N concentration and P and K deficiencies in the chitin treatment led to nutrient disbalances. This may explain the decreased fruit yield and disease resistance of the fruits towards Botrytis cinerea. In contrast, chitin caused a clear defense priming effect of the strawberry leaves, with a strong induction of the jasmonic acid response, resulting in less disease symptoms. Chitin caused positive effects on shoot growth and disease resistance of the leaves, but caution needs to be taken for nutrient disbalances leading to negative influences on fruit production and disease susceptibly.
2021-01-01 | GSE144526 | GEO
Project description:Bacterial community diversities under chitin addition
Project description:Strawberry is economically important and widely grown but susceptible to a large variety of phytopathogenic organisms. Among them, Xanthomonas fragariae is a quarantine bacterial pathogen threatening strawberry productions by causing angular leaf spots. Using whole transcriptome sequencing, gene expression of both plant and bacteria in planta was analyzed at two time points, 12- and 29-days post inoculation, in order to compare pathogen and host response between the stages of early visible and of well-developed symptoms. Among 28’588 known genes in strawberry and 4’046 known genes in X. fragariae expressed at both time points, a total of 361 plant and 144 bacterial genes were significantly differentially expressed, respectively. The identified higher expressed genes in the plants were pathogen-associated molecular pattern receptors and pathogenesis related thaumatin encoding genes, whereas the more expressed early genes were related to chloroplast metabolism as well as photosynthesis related coding genes. Most of X. fragariae genes involved in host interactions, recognitions and pathogenesis, were lower expressed at late-phase infection. This study gives a first insight on the interaction of X. fragariae with its host. The strawberry plant changed its metabolism consistently with the progression of infection.
Project description:Histone modifications mediate between genes and environment in plant growth and developmental events. To characterize the histone modification signatures in strawberry, we performed ChIP-seq experiments for seven histone marks in the immature and mature fruits, and leaves of the woodland strawberry F. vesca ('Ruegen'). The seven histone marks include H3K9/K14ac, H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3 and H3K9me2. In addition, to reveal the effect of the histone deacetylase FvHDA6, H3K9/K14a was profiled in FvHDA6-OE fruits.
Project description:Soil microorganisms carry out decomposition of complex organic carbon molecules, such as chitin. High diversity of the soil microbiome and complexity of the soil habitat has posed a challenge to elucidate specific interactions between soil microorganisms. Here, we overcame this challenge by studying a model soil consortium (MSC-2) that is composed of 8 species. The MSC-2 isolates were originally obtained from the same soil that was enriched with chitin as a substrate. Our aim was to elucidate specific roles of the 8 member species during chitin metabolism in soil. The 8 species were added to sterile soil with chitin and incubated for 3 months. Multi-omics was used to understand how the community composition, transcript and protein expression and chitin-related metabolites shifted during the incubation period. The data clearly and consistently revealed a temporal shift during chitin decomposition and defined contributions by individual species. A Streptomyces species was a key player in early steps of chitin decomposition, followed by other members of MSC-2. These results illustrate how multi-omics applied to a defined consortium untangles complex interactions between soil microorganisms.