Project description:The root transcriptome analyses of peanut wild species A.correntina and cultivated variety Xiaobaisha
| PRJNA576657 | ENA
Project description:The root transcriptome analyses of peanut cultivated variety Xiaobaisha in response to benzoic acid and p-cumaric acid stress
| PRJNA576608 | ENA
Project description:The root transcriptome analyses of peanut wild species A.correntina and cultivated variety Xiaobaisha in response to benzoic acid and p-cumaric acid stress
Project description:Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently have moderately significant number of ESTs has been released into the public domain. Utilization of these ESTs for the oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. We have developed a high-density oligonucleotide microarray for peanut using approximately 47,767 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and investigate the utility of this array, we compared transcript levels in pod to peg, leaf, stem, and root tissues. Results from this experiment showed a number of putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to either peg, leaf, or stem. Keywords: Peanut tissue-specific gene expression We used Agilent peanut gene chips (017430) to identify putative tissue-specific genes and investigate the utility of the array for expression profiling of various peanut tissues. Pod, leaf, stem, peg and root tissues of the peanut genotype Flavrunner 458 were used in the study. Field grown plants under normal irrigation were used for sample collection. Three replications of microarray experiments were carried out by hybridizing the cRNA from pod tissue and cRNA from leaf, stem, peg and root tissues on the same dual color oligonucleotide arrays.
Project description:Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently have moderately significant number of ESTs has been released into the public domain. Utilization of these ESTs for the oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. We have developed a high-density oligonucleotide microarray for peanut using approximately 47,767 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and investigate the utility of this array, we compared transcript levels in pod to peg, leaf, stem, and root tissues. Results from this experiment showed a number of putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to either peg, leaf, or stem. Keywords: Peanut tissue-specific gene expression
Project description:Peanut is one of the most important cash crops with high quality oil, high protein content, and many other nutritional elements, and grown globally. Cultivated peanut (Arachis hypogaea L.) is allotetraploid with a narrow genetic base, and its genetics and molecular mechanisms controlling the agronomic traits are poorly understood. The array SNP data was used for revaling of key candidate loci and genes associated with important agronomic traits in peanut
2022-02-22 | GSE197103 | GEO
Project description:The root transcriptome analyses of peanut wild species A.correntina
Project description:Peanut (Arachis hypogaea) has a large (~2.7 Gbp) allotetraploid genome with closely related component genomes making its genome very challenging to assemble. Here we report genome sequences of its diploid ancestors (A. duranensis and A. ipaënsis). We show they are similar to the peanutâs A- and B-genomes and use them use them to identify candidate disease resistance genes, create improved tetraploid transcript assemblies, and show genetic exchange between peanutâs component genomes. Based on remarkably high DNA identity and biogeography, we conclude that A. ipaënsis may be a descendant of the very same population that contributed the B-genome to cultivated peanut. Whole Genome Bisulphite Sequencing of the peanut species Arachis duranensis and Arachis ipaensis.
Project description:Cultivated eggplant XN, a waterlogging-tolerant variety, were treated with waterlogging stress, and the root of XN eggplant were harvested at the time point of 0, 6, 12, and 24 h post treatment ,relatively. iTRAQ-based quantitative proteomics was performed to analyze protein dynamics in eggplant root.
Project description:Transcriptome analysis of root development related genes in terrestrial and hydroponic ramie. Ramie seedlings were cultivated in soil, and in hydroponic with the shoot-cutting propagation method. The root samples from hydrophonic ramie were collected from the early stage (5-day-old seedling) and the late stage (30-day-old seedling) of acquatic roots induction. The roots of ramie seedling cultivated in soil were also collected for comparative analysis. Our study represents the detailed analysis of ramie root transcriptomes with biologic replicates.