Project description:Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression, both in mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of lncRNAs in plant defense responses are yet to be fully explored. Here, we used strand-specific RNA sequencing to identify 1649 lncRNAs in potato (Solanum tuberosum) from stem tissues. The lncRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lncRNAs (86%) are transcribed from intergenic regions and possess single exons. A time-course RNA-seq analysis between a tolerant and susceptible potato cultivar challenged with Pectobacterium carotovorum subsp. brasilience revealed that 227 of these lncRNAs could be associated with response to this pathogen. These results suggest that lncRNAs have potential functional roles in potato defense responses. This work provides the foundation for further functional studies in understanding potato defense mechanisms.
Project description:Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression, both in mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of lncRNAs in plant defense responses are yet to be fully explored. Here, we used strand-specific RNA sequencing to identify 1649 lncRNAs in potato (Solanum tuberosum) from stem tissues. The lncRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lncRNAs (86%) are transcribed from intergenic regions and possess single exons. A time-course RNA-seq analysis between a tolerant and susceptible potato cultivar challenged with Pectobacterium carotovorum subsp. brasilience revealed that 227 of these lncRNAs could be associated with response to this pathogen. These results suggest that lncRNAs have potential functional roles in potato defense responses. This work provides the foundation for further functional studies in understanding potato defense mechanisms.
Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.
2024-09-02 | MODEL2408160001 | BioModels
Project description:RNA-seq of pistil: diploid potato
Project description:The intent was to study, from transcriptome analysis, shade and drought responses in Solanum tuberosum (potato). We performed Illumina 50 bp single-end RNA-seq in tissues of control and treated var. Spunta wild-type plants. Drought experiments also included two independent AtBBX21-overexpressing (BBX21-OE) potato lines.
Project description:Purpose: MicroRNAs (miRNAs) are ubiquitous components of endogenous plant transcriptome. miRNAs are small, single-stranded and ~21 nt long RNAs which regulate gene expression at the post-transcriptional level and are known to play essential roles in various aspects of plant development and growth. Previously, a number of miRNAs have been identified in potato through in silico analysis and deep sequencing approach. However, identification of miRNAs through deep sequencing approach was limited to a few tissue types and developmental stages. This study reports the identification and characterization of potato miRNAs in three different vegetative tissues and four stages of tuber development by high throughput sequencing. Results: Small RNA libraries were constructed from leaf, stem, root and four early developmental stages of tuberization and subjected to deep sequencing, followed by bioinformatics analysis. A total of 89 conserved miRNAs (belonging to 33 families), 147 potato-specific miRNAs (with star sequence) and 112 candidate potato-specific miRNAs (without star sequence) were identified. The digital expression profiling based on TPM (Transcripts Per Million) and qRT-PCR analysis of conserved and potato-specific miRNAs revealed that some of the miRNAs showed tissue specific expression (leaf, stem and root) while a few demonstrated tuberization stage-specific expressions. Targets were predicted for identified conserved and potato-specific miRNAs, and predicted targets of four conserved miRNAs, miR160, miR164, miR172 and miR171, which are ARF16 (Auxin Response Factor 16), NAM (NO APICAL MERISTEM), RAP1 (Relative to APETALA2 1) and HAIRY MERISTEM (HAM) respectively, were experimentally validated using 5′RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends). Gene ontology (GO) analysis for potato-specific miRNAs was also performed to predict their potential biological functions. Conclusions: We report a comprehensive study of potato miRNAs at genome-wide level by high-throughput sequencing and demonstrate that these miRNAs have tissue and/or developmental stage specific expression profile. Also, predicted targets of conserved miRNAs were experimentally confirmed for the first time in potato. Our findings indicate the existence of extensive and complex small RNA population in this crop and suggest their important role in pathways involved in diverse biological processes, including tuber developmental process.
Project description:In this study we compare the transcriptome response of two potato varieties Atlantic and NY138 to the infection by Candidatus Liberibacter solanacearum. Four weeks old potato plant grown in growth chamber were infested with potato psyllid to transmit the pathogen Candidatus Liberibacter solanacearum. Three weeks after infestation leaf samples were collected for RNA extraction and transcriptome analysis. This is the first transcriptome study on this potato disease.
Project description:Small RNAs, including microRNAs (miRNAs), phased secondary small interfering RNAs (phasiRNA), and heterochromatic small interfering RNAs (hc-siRNA) are an essential component of gene regulation. To establish a broad potato small RNA atlas, we constructed an expression atlas of leaves, flowers, roots, and tubers of Desiree and Eva, which are commercially important potato (Solanum tuberosum) cultivars. All small RNAs identified were observed to be conserved between both cultivars, supporting the hypothesis that small RNAs have a low evolutionary rate and are mostly conserved between lineages. However, we also found that a few miRNAs showed differential accumulation between the two potato cultivars, and that hc-siRNAs have a tissue specific expression. We further identified dozens of reproductive and non-reproductive phasiRNAs originating from coding and noncoding regions that appeared to exhibit tissue-specific expression. Together, this study provides an extensive small RNA profiling of different potato tissues that might be used as a resource for future investigations.
Project description:MiRNA plays an important role in post-transcriptional gene regulation in plants. Whether TOR is involved in post-transcriptional gene regulation remains unclear in potato and other plants. In this study, we conducted the high-throughput sequencing of genome-wide miRNAs in the potato seedlings for profiling their expression patterns and identifying TOR related miRNAs in potato.