Project description:Aims/Hypothesis. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Methods. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain- or loss of LMO3 expression, respectively. Results. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. Lmo3 expression in eWAT significantly improved glucose clearance and insulin sensitivity in diet-induced obesity, paralleled by increased serum adiponectin. On a molecular level, LMO3 expression in eWAT increased pathways indicative of adipogenesis and PPARg signaling as well as mitochondrial activity, paralleled by a suppression of adipose tissue fibrosis. In vitro, Lmo3 expression in 3T3-L1 adipocytes increased insulin-stimulated GLUT4 translocation and glucose uptake as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. LMO3 overexpression promoted, while silencing of LMO3 suppressed, mitochondrial oxidative capacity in human mature adipocytes. Conclusions. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose tolerance, insulin sensitivity and adiponectin secretion. Together with increased PPARγ activity, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity.
Project description:Aims/Hypothesis. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Methods. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain- or loss of LMO3 expression, respectively. Results. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. Lmo3 expression in eWAT significantly improved glucose clearance and insulin sensitivity in diet-induced obesity, paralleled by increased serum adiponectin. On a molecular level, LMO3 expression in eWAT increased pathways indicative of adipogenesis and PPARg signaling as well as mitochondrial activity, paralleled by a suppression of adipose tissue fibrosis. In vitro, Lmo3 expression in 3T3-L1 adipocytes increased insulin-stimulated GLUT4 translocation and glucose uptake as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. LMO3 overexpression promoted, while silencing of LMO3 suppressed, mitochondrial oxidative capacity in human mature adipocytes. Conclusions. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose tolerance, insulin sensitivity and adiponectin secretion. Together with increased PPARγ activity, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity.
Project description:Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) in human mature visceral adipocytes; however, its function in these cells is currently unknown. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high-fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics, as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain or loss of LMO3 expression, respectively. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. LMO3 expression in eWAT significantly improved insulin sensitivity and healthy visceral adipose tissue expansion in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, LMO3 expression in 3T3-L1 adipocytes increased PPARγ transcriptional activity, insulin-stimulated GLUT4 translocation and glucose uptake, as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. Mechanistically, LMO3 induced the PPARγ coregulator Ncoa1, which was required for LMO3 to enhance glucose uptake and mitochondrial oxidative gene expression. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose metabolism, insulin sensitivity, mitochondrial function, and adiponectin secretion. Together with increased PPARγ activity and Ncoa1 expression, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity. KEY MESSAGES: LMO3 increases beneficial visceral adipose tissue expansion and insulin sensitivity in vivo. LMO3 increases glucose uptake and oxidative mitochondrial activity in adipocytes. LMO3 increases nuclear coactivator 1 (Ncoa1). LMO3-enhanced glucose uptake and mitochondrial gene expression requires Ncoa1.
Project description:Background. Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. LIM Domain Only 3 (LMO3) plays a crucial role in adipogenesis modulating the key adipogenic master switch PPARγ in human, but not mouse, visceral adipose progenitors; however, despite high expression in mature adipocytes, its function in these cells is currently unknown. Aims/Hypothesis. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Methods. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain- or loss of LMO3 expression, respectively.Results. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. Lmo3 expression in eWAT significantly improved glucose clearance and insulin sensitivity in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, Lmo3 expression in 3T3-L1 adipocytes increased insulin-stimulated GLUT4 translocation and glucose uptake as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. On a molecular level, LMO3 augmented PPARg activity, oxidative mitochondrial gene expression, which depended on and the expression of the PPARg co-activator Ncoa1, which was required for LMO3 effects on mitochondria and glucose uptake. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. Conclusions. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose tolerance, insulin sensitivity and adiponectin secretion. Together with increased PPARγ activity, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity.
Project description:In obesity, misalignment of feeding time with the light/dark environment results in disruption of peripheral circadian clocks. Conversely, restricting feeding to the active period mitigates metabolic syndrome through mechanisms that remain unknown. Here we show that adipocyte thermogenesis is essential for the healthful metabolic response to time restricted feeding. Genetic enhancement of adipocyte thermogenesis through ablation of Zfp423 attenuates obesity caused by circadian mistimed high fat diet feeding through a mechanism involving creatine metabolism. Circadian control of adipocyte creatine metabolism underlies timing of diet-induced thermogenesis, and enhancement of adipocyte circadian rhythms through overexpression of the clock activator Bmal1 ameliorates metabolic complications during diet induced obesity. These findings establish creatine mediated diet-induced thermogenesis as a bioenergetic mechanism driving metabolic benefits during time-restricted feeding.