Project description:This study aims to investigate differentially expressed proteins in tumor pericytes with or without TCAF2-ovexpression. Tumor pericytes were isolated from tumor of patients with colorectal cancer. Then, tumor pericytes were cultured, transfected with vector or TCAF2 overexpressing plasmid. Top ten cytokines were screened and Wnt5a was the most significant one.
Project description:This study aims to investigate differentially expressed proteins in tumor pericytes derived from colorectal cancer patients with or without liver metastasis. Tumor pericytes were isolated from tumor of colorectal cancer patients with or without liver metastasis. Then, tumor pericytes were cultured and subjected to proteomic analysis. TCAF2 was significantly increased in tumor pericytes from liver metastasis patients.
Project description:Cerebral cavernous malformation (CCM) is caused by loss-of-function mutations in CCM1, CCM2, or CCM3 genes of endothelial cells. It is characterized by pericyte deficiency. However, the role of pericytes in CCMs remains poorly understood. Our study showed that pericytes in Cdh5CreERT2; Ccm1fl/fl (Ccm1ECKO) mice were high expression of PDGFRβ. The inhibition of pericyte function by CP-673451 aggravated the CCM lesion development. RNA-seq analysis revealed the molecular traits of pericytes, such as highly expressed ECM-related genes, especially Fn1. Furthermore, KLF4 coupled with phosphorylated SMAD3 promoted the transcription of fibronectin in pericytes of CCM lesions. RGDS peptide, an inhibitor of fibronectin, decreased the lesion area in the cerebella and retinas of Ccm1ECKO mice. Also, human CCM lesions had abundant fibronectin deposition, and pSMAD3- and KLF4-positive pericytes. The current data demonstrated that pericytes are essential for CCM lesion development, and fibronectin intervention may provide a novel target for therapeutic intervention in such patients.
Project description:The objective of this array was to determine the global gene expression profile of human placental pericytes for comparison with other publicly available arrays of pericytes and mesenchymal stromal cells isolated from various human tissues. Pericytes are critical cellular components of the microvasculature that play a major role in vascular development and pathologies, yet their study has been hindered by lack of a standardized method for their isolation and growth. Here we report a method for culturing human pericytes from a readily available tissue source, placenta, and provide a thorough characterization of resultant cell populations. We developed an optimized protocol for obtaining pericytes by outgrowth from microvessel fragments recovered after enzymatic digestion of human placental tissue. We characterized outgrowth populations by immunostaining, by gene expression analysis, and by functional evaluation of cells implanted in vivo. Our approach yields human pericytes that may be serially expanded in culture and that uniformly express the cellular markers NG2, CD90, CD146, α-SMA, and PDGFR-β, but lack markers of smooth muscle cells, endothelial cells, and leukocytes. When co-implanted with human endothelial cells into C.B-17 SCID/bg mice, human pericytes invest and stabilize developing human endothelial cell-lined microvessels. We conclude that our method for culturing pericytes from human placenta results in the expansion of functional pericytes that may be used to study a variety of questions related to vascular biology. Total RNA from three different pericyte isolations at subculture 1 was collected and examined for relative gene expression.