Project description:Oryza longistaminata is an African wild rice species that possesses special traits for breeding applications. Self-incompatibility is the main cause of sterility in O. longistaminata, but here we demonstrated that its pollen fertility and vitality are normal. Lipid and carbohydrate metabolism were active throughout pollen development. In this study, transcriptomics quantitative analysis was used to investigate the profiles of genes related to lipid and carbohydrate metabolism in 4-, 6- and 8.5-mm O. longistaminata spikelets before flowering. We documented cytological changes throughout important stages of anther development, including changes in reproductive cells as they formed mature pollen grains through meiosis and mitosis. RNA-seq and proteome association analysis indicated that fatty acids were converted to sucrose after the 6-mm spikelet stage, based on the abundance of most key enzymes of the glyoxylate cycle and gluconeogenesis. In conclusion, our study provides novel insights into the pollen viability of O. longistaminata at the transcriptome level, which can be used to improve the efficiency of male parent pollination in hybrid rice breeding applications.
Project description:Oryza longistaminata, a wild rice, vegetatively reproduces and forms a networked clonal colony consisting of ramets connected by rhizomes. Although water, nutrients, and other molecules can be transferred between ramets via the rhizomes, inter-ramet communication in response to spatially heterogeneous nitrogen availability is not well understood. We analyzed the transcriptomic response of ramet pairs to heterogeneous nitrogen availability by using a split hydroponic system that allowed each ramet root to be exposed to different conditions.