Project description:This study explores the impact of lifestyle and environment on gene expression through whole transcriptome profiling of peripheral blood samples in Fijian population (native Melanesians and Indians) living in the rural and urban areas. 41 individuals (14 urban Melanesians, 10 rural Melanesians and 17 urban Indians) of both gender were sampled under informed consents. Only healthy individuals aged between 18 and 65 were sampled. RNA from each sample was hybridized to an Illumina array. No replicates were done in this study
Project description:This study explores the impact of lifestyle and environment on gene expression through whole transcriptome profiling of peripheral blood samples in Fijian population (native Melanesians and Indians) living in the rural and urban areas.
Project description:The molecular basis of evolutionary change is assumed to be genetic variation. However, growing evidence suggests that epigenetic mechanisms, such as DNA methylation, may also be involved in evolutionary change. An important first step in evaluating this hypothesis is to test for the presence of epigenetic variation between natural populations living under different environmental conditions. In the current study we explored variation between populations of Darwin’s finches living in adjacent “urban” and “rural” environments on Santa Cruz Island in the Galápagos. We tested for morphological, genetic, and epigenetic differences between the urban and rural populations of each of two species of ground finches, Geospiza fortis and G. fuliginosa. Using data collected from more than 1000 birds, we found significant morphological differences between populations of G. fortis, but not G. fuliginosa. We did not find genetic differences between populations of either species, based on comparisons of copy number variation (CNV). In contrast, we did find epigenetic differences between the urban and rural populations of both species, based on DNA methylation analysis. We explored genomic features and gene associations of the differentially methylated regions (DMR), as well as their possible functional significance. In summary, our study documents local population epigenetic variation within species of Darwin’s finches.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:Epigenetic variation has the potential to control environmentally dependent development and contribute to phenotypic responses to local environments. Environmental epigenetic studies of sexual organisms confirm the responsiveness of epigenetic variation, which should be even more important when genetic variation is lacking. A previous study of an asexual snail, Potamopyrgus antipodarum, demonstrated that different populations derived from a single clonal lineage differed in both shell phenotype and methylation signature when comparing lake versus river populations. Here, we examine methylation variation among lakes that differ in environmental disturbance and pollution histories. The differential DNA methylation regions (DMRs) identified among the different lake comparisons suggested a higher number of DMRs and variation between rural Lake 1 and one urban Lake 2 and between the two urban Lakes 2 and 3, but limited variation between the rural Lake 1 and urban Lake 3. DMR genomic characteristics and gene associations were investigated. Observations suggest there is no effect of geographic distance or any consistent pattern of DMRs between urban and rural lakes. Environmental factors may influence epigenetic response.
Project description:The Study Of Urban and Rural Crohn disease Evolution (SOURCE, n=380) characterized exposures, diet, and host and microbial factors in rural and urban Chinese controls and newly diagnosed Crohn Disease (CD), and in treatment-naïve Israeli CD and controls. We considered diet-omics domains simultaneously to detect complex interactions in the gut to prioritize potential beneficial and pathogenic factors.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:Sub-Saharan Africa represents 69% of the total number of individuals living with HIV infection worldwide and 72% of AIDS deaths globally. Pulmonary infection is a common and frequently fatal complication, though little is known regarding the lower airway microbiome composition of this population. Our objectives were to characterize the lower airway microbiome of Ugandan HIV-infected patients with pneumonia, to determine relationships with demographic, clinical, immunological, and microbiological variables and to compare the composition and predicted metagenome of these communities to a comparable cohort of patients in the US (San Francisco). Bronchoalveolar lavage samples from a cohort of 60 Ugandan HIV-infected patients with acute pneumonia were collected. Amplified 16S ribosomal RNA was profiled and aforementioned relationships examined. Ugandan airway microbiome composition and predicted metagenomic function were compared to US HIV-infected pneumonia patients. Among the most common bacterial pulmonary pathogens, Pseudomonas aeruginosa was most prevalent in the Ugandan cohort. Patients with a richer and more diverse airway microbiome exhibited lower bacterial burden, enrichment of members of the Lachnospiraceae and sulfur-reducing bacteria and reduced expression of TNF-alpha and matrix metalloproteinase-9. Compared to San Franciscan patients, Ugandan airway microbiome were significantly richer, and compositionally distinct with predicted metagenomes that encoded a multitude of distinct pathogenic pathways e.g secretion systems. Ugandan pneumonia-associated airway microbiome is compositionally and functionally distinct from those detected in comparable patients in developed countries, a feature which may contribute to adverse outcomes in this population. Please note that the data from the comparable cohort of patients in the USUS data was published as supplemental material of PMID: 22760045 but not submitted to GEO The 'patient_info.txt' contains 12 clinical, 7 immunological and 3 microbiological variables for each patient. The G2 PhyloChip microarray platform (commercially available from Second Genome, Inc.) was used to profile bacteria in lower airway samples from 60 subjects