Project description:Two synthetic bacterial consortia (SC) composed by bacterial strains isolated from a natural phenanthrene-degrading consortium (CON), Sphingobium sp. AM, Klebsiella aerogenes B, Pseudomonas sp. Bc-h and T, Burkholderia sp. Bk and Inquilinus limosus Inq were grown in LMM supplemented with 200 mg/L of phenanthrene (PHN) during 72 hours in triplicate.
Project description:Synthetic microbial consortia represent a new frontier for synthetic biology given that they can solve more complex problems than monocultures. However, most attempts to co-cultivate these artificial communities fail because of the ‘‘winner-takes-all’’ in nutrients competition. In soil, multiple species can coexist with a spatial organization. Inspired by nature, here we show that an engineered spatial segregation method can assemble stable consortia with both flexibility and precision. We create microbial swarmbot consortia (MSBC) by encapsulating subpopulations with polymeric microcapsules. The crosslinked structure of microcapsules fences microbes, but allows the transport of small molecules and proteins. MSBC method enables the assembly of various synthetic communities and the precise control over the subpopulations. These capabilities can readily modulate the division of labor and communication. Our work integrates the synthetic biology and material science to offer new insights into consortia assembly and server as foundation to diverse applications from biomanufacturing to engineered photosynthesis.
Project description:Chemical signaling in the plant microbiome can have drastic effects on microbial community structure, and on host growth and development. Previously, we demonstrated that the auxin metabolic signal interference performed by the bacterial genus Variovorax via a novel auxin degradation locus was essential for maintaining stereotypic root development in an ecologically-relevant bacterial synthetic community. Here, we dissect the Variovorax auxin degradation locus to define the genes necessary and sufficient for indole-3-acetic acid (IAA) degradation and signal interference. We determine the crystal structures and binding properties of the operon’s MarR-family repressor with IAA and other auxins. We identify auxin-degradation operons across the bacterial tree of life and define two distinct types based on gene content and metabolic products: iac-like and iad-like. We solve the structures of MarRs from representatives of each auxin degradation operon type, establishing that each have distinct IAA binding pockets. Comparison of representative IAA degrading strains from diverse bacterial genera show that while all degrade IAA, only strains containing iad-like auxin degrading operons interfere with auxin signaling in a complex synthetic community context. This suggests that iad-like operon containing strains, including Variovorax species, play a key ecological role in modulating auxins in the plant microbiome.
2022-08-11 | GSE210968 | GEO
Project description:Highly efficient degradation of phenanthrene strain sequences