Project description:Transcriptional profiling with next-generation sequencing methods demonstrated that a Neurospora crassa mutant with the three most highly expressed beta-glucosidase genes deleted had a transcriptional response to cellobiose similair to that of wild type N. crassa exposed to cellulose. N. crassa was pregrown in Sucrose and transferred to Avicel (cellulose), Cellobiose, Sucrose or media with no carbon added. Biological triplicates used to identify differentially expressed genes in WT on Avicel. Single libraries for mutant strains identify which genes show similair expression on cellobiose as in the WT on cellulose.
Project description:Purpose: We explore gene expression changes when Neurospora crassa wild type responds to different carbon sources in Vogel's medium. Method: We obtained mRNA samples of Neurospora crassa WT in Vogel's minimal medium (VMM) with different carbon source and used RNA-seq technique to measure the trancriptome changes. Results: We identified many genes of transcription factors and enzymes that were up regulated or down regulated in response to the different carbon stimulation. Conclusion: Our data represents a systematic transcriptome profiling of filamentous fungi on different carbon source and identify COL-26 as a critical regulator in degradation of starch components.
Project description:Transcriptional profiling with next-generation sequencing methods demonstrated that a Neurospora crassa mutant with the three most highly expressed beta-glucosidase genes deleted had a transcriptional response to cellobiose similair to that of wild type N. crassa exposed to cellulose.
Project description:RNA-seq from Neurospora crassa at 5 time points of light induction, with 2 replicates for each, totalling 10 samples RNA-seq from Neurospora crassa at 5 time points of light induction, with 2 replicates for each, totalling 10 samples
Project description:Multi-targeting priming (MTP) for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences. We demonstrated superior performance of two MTPs compared to oligo-dT microarray profling and RNA tag sequencing the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development. Priming with MTPs in addition to oligo-dT resulted in higher sensitivity, a greater number of well-measured genes, more genes significantly differentially expressed, and a greater power to detect meager differences. Neurospora crassa mat A FGSC#2489 2 developmental stages and oligo(dT) primers.