Project description:Dothistroma septosporum, the primary causal agent of Dothistroma needle blight, is one of the most significant foliar pathogens of pine worldwide. Its wide host and environmental ranges have led to its global success as a pathogen and severe economic damage to pine forests in many regions. This comprehensive global population study elucidated the historical migration pathways of the pathogen to reveal the Eurasian origin of the fungus. When over 3800 isolates were examined, three major population clusters were revealed: North America, Western Europe, and Eastern Europe, with distinct subclusters in the highly diverse Eastern European cluster. Modeling of historical scenarios using approximate Bayesian computation revealed the North American cluster was derived from an ancestral population in Eurasia. The Northeastern European subcluster was shown to be ancestral to all other European clusters and subclusters. The Turkish subcluster diverged first, followed by the Central European subcluster, then the Western European cluster, which has subsequently spread to much of the Southern Hemisphere. All clusters and subclusters contained both mating-types of the fungus, indicating the potential for sexual reproduction, although asexual reproduction remained the primary mode of reproduction. The study strongly suggests the native range of D. septosporum to be in Eastern Europe (i.e., the Baltic and Western Russia) and Western Asia.
Project description:A new double-stranded (ds) RNA mycovirus has been identified in isolate Ds752-1 of the phytopathogenic fungus Dothistroma septosporum, the causal agent of Dothistroma needle blight, also known as red band needle blight or pine needle blight. Dothistroma septosporum chrysovirus 1 (DsCV-1) is a new member of the genus Alphachrysovirus in the family Chrysoviridae. The DsCV-1 genome comprises four dsRNA elements designated 1, 2, 3, and 4 from largest to smallest. dsRNA1 encodes an RNA-dependent RNA polymerase (RdRP) that is most similar to the RdRP of Erysiphe necator associated chrysovirus 3. dsRNA2 potentially encodes two hypothetical proteins, one of which is small and has no homology to known proteins, and one of which is large with significant sequence similarity to the alphachryso-P3 of other alphachrysoviruses. dsRNA3 and dsRNA4 encode a coat protein (CP) and a putative cysteine protease, respectively. This is the first report of a mycovirus infecting the fungus D. septosporum, and DsCV-1 is one of three Chrysoviridae family members found to possess genomic dsRNAs potentially encoding more than one protein.