Project description:Ticks are blood feeding arthropod ectoparasites that transmit pathogens, which cause diseases in humans and animals worldwide. In the past ten decades, the continuous human exploitation of environmental resources and the increase in human outdoor activities has promoted contact with arthropod vectors normally present in the wild, resulting in increased transmission of vector-borne pathogens. In addition, vector populations are expanding in response to climate change and human interventions that impact reservoir host movement and human exposure to infected vectors. Among these emerging vector-borne pathogens, Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) has become an important tick-borne pathogen in the United States, Europe and Asia, with increasing numbers of infected people and animals every year. Diseases caused by A. phagocytophilum include human granulocytic anaplasmosis (HGA), equine and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. The natural infection cycle of A. phagocytophilum is dependent upon the presence of infected vertebrate reservoir hosts and Ixodid tick vectors. In the United States and Europe the main vector species are Ixodes scapularis, Ixodes pacificus, and Ixodes ricinus, while a wide range of mammals, lizards, and birds serve as reservoir hosts for various A. phagocytophilum genotypes. A. phagocytophilum initially infects tick midgut cells and then subsequently develops in salivary glands for transmission to susceptible hosts during tick feeding where the pathogen infects granulocytic cells, primarily neutrophils. Anaplasma phagocytophilum develops within membrane-bound inclusions in the host cell cytoplasm. This pathogen has evolved with its tick and vertebrate hosts through dynamic processes involving genetic traits of the pathogen and hosts that collectively mediate pathogen infection, development, persistence, and survival. However, the mechanisms used by A. phagocytophilum for molecular mechanisms involved in tick-pathogen interactions have not been fully characterized. The objective of this study is to characterize the dynamics of the microRNA response in the tick vector Ixodes scapularis in response to A. phagocytophilum infection. To address this objective, the composition of tick microRNAs was characterize using RNA sequencing in I. scapularis tick cells in response to A. phagocytophilum infection. The discovery of these mechanisms provides evidence that a control strategy could be developed targeted at both vertebrate and tick hosts for more complete control of A. phagocytophilum and its associated diseases.
Project description:There has been an emergence and expansion of tick-borne diseases in Europe, Asia and North America in recent years, including Lyme disease, tick-borne encephalitis, and human anaplasmosis. The primary tick vectors implicated are hard ticks of the Ixodes genera. Although much is known about the host response to these bacterial and viral pathogens, there is limited knowledge of the cellular responses to infection within the tick vector. The bacterium Anaplasma phagocytophilum (A. phagocytophilum), is able to bypass apoptotic processes in ticks, enabling infection to proceed. However, the tick cellular responses to infection with the flaviviruses tick-borne encephalitis virus (TBEV) and louping ill virus (LIV), which cause tick-borne encephalitis and louping ill respectively, are less clear. Infection of an Ixodes ricinus (I. ricinus) tick cell line with the viruses LIV and TBEV, and the bacterium A. phagocytophilum, identified activation of common and distinct cellular pathways. In particular, commonly-upregulated genes included those that modulate apoptotic pathways (HSP70), putative anti-pathogen genes (FKBP and XBL1), and genes that influence the tick innate immune response, including selective activation of toll genes. These data provide an insight into potentially key genes involved in the tick cellular response to viral or bacterial infection.
Project description:Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment.
Project description:Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment. Four milimeter ear biopsies from BALB/cJ mice infested with Ixodes scapularis nymphs were assayed using Affymetrix genechip 430A 2.0 arrays at 1, 3, 6, and 12 hours after infestation during a primary exposure. 3 mice were measured at each time point. Controls were 3 similarly housed but tick-free mice.
Project description:Tick-borne diseases (TBDs) are the most common illnesses transmitted by ticks, and the annual number of reported TBD cases continues to increase. The Asian longhorned tick, a vector associated with at least 30 human pathogens, is native to eastern Asia and recently reached the USA as an emerging disease threat. Newly identified tick-transmitted pathogens continue to be reported, raising concerns about how TBDs occur. Interestingly, tick can harbor pathogens without being affected themselves. For viral infections, ticks have their own immune systems that protect them from infection. Meanwhile, tick-borne viruses have evolved to avoid these defenses as they establish themselves within the vector. Here, we show in detail that infecting longhorned ticks with distinct arthropod-borne RNA viruses through two approaches natural blood feeding and injection, all induce the production of vsiRNAs. Dicer2-like homolog plays a role in regulating antiviral RNAi responses as knocking down of this gene enhanced viral replication. Furthermore, we demonstrate that tick antiviral RNAi responses are inhibited through expression heterologous VSR proteins in recombinant SINV. We identify both the virus and tick factors are critical components to understanding TBDs. Importantly, our study introduces a novel, in vivo virus-vector-mouse model system for exploring TBDs in the future.
Project description:Powassan virus (POWV), a vector-borne pathogen transmitted by Ixodes ticks in North America, is the causative agent of Powassan encephalitis. As obligate hematophagous organisms, ticks transmit pathogens like POWV at the tick bite site, specifically during the initial stages of feeding. Tick-feeding and salivary factors modulate the host's immunological responses, facilitating blood feeding and pathogen transmission. However, the mechanisms of immunomodulation during POWV transmission remain inadequately understood. In this study, we investigated the global cutaneous transcriptomic changes associated with tick bites during POWV transmission. We collected skin biopsies from the tick attachment sites at 1-, 3-, and 6-hours post-feeding by POWV-infected and uninfected ticks, followed by RNA sequencing of these samples. Differentially expressed genes were analyzed for pathway enrichment using gene ontology and pathway enrichment analyses. Our findings reveal that tick feeding alone significantly impacts the skin transcriptome within the first 1 to 3 hours of tick attachment. Although early POWV transmission induces minimal changes in the local environment, a pronounced shift toward a proinflammatory state is observed 6 hours post tick attachment, characterized by neutrophil recruitment and interleukin signaling. These transcriptomic data elucidate the dynamic changes at the tick bite site, transitioning from changes that assist blood meal acquisition to a proinflammatory phase that may facilitate viral dissemination.
Project description:There are very few studies exploring the genetic diversity of tick-borne encephalitis complex viruses. Most of the viruses have been sequenced using capillary electrophoresis, however, very few viruses have been analyzed using deep sequencing to look at the genotypes in each virus population. In this study, different viruses and strains belonging to the tick-borne encephalitis complex were sequenced and genetic diversity was analyzed. Shannon entropy and single nucleotide variants were used to compare the viruses. Then genetic diversity was compared to the phylogenetic relationship of the viruses.
Project description:Ticks are vectors of different pathogens causing human and animal diseases. Particularly, Rickettsia slovaca is zoonotic infectious bacterium transmitted by Dermacentor ticks, agent of tick-borne lymphadenopathy (TIBOLA), common across Europe. Current studies point to extreme complexity of bacterial induced effects in tick host. Systems biology tools, including proteomics, greatly contribute to understanding of molecular details of pathogen-tick-host interactions. Herein we compared laboratory-infected ticks with uninfected control after four weeks of incubation. Propagation of R. slovaca was confirmed by quantitative PCR. Using DNA was confirmed infection with R. slovaca. By proteomic approach, we discovered 33 differentially abundant gel spots, 23 of them accumulated upon artificial infection with R. slovaca. Modest 6.9% of tick proteome was affected. The protein localizations showing that eight proteins spots might be secreted, three cytoplasmic, two mitochondrial, six likely having multiple localizations, one cell membrane and one nucleus. We identified following proteins defensin, serpins, glycine-rich protein, heat shock protein involved in artificially infected tick vector, Dermacentor reticulatus. Discovered differentially abundant proteins should be further evaluated as targets to block the transmission of bacterial pathogen.