Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
2017-01-12 | GSE93419 | GEO
Project description:Microbial communities during Start-up of Thermophilic anaerobic digestion
Project description:Microbial communities in anaerobic co-digestion
| PRJNA275176 | ENA
Project description:Enzyme modified biodegradable plastic preparation and performance in anaerobic co-digestion with food waste
| PRJNA1068048 | ENA
Project description:Co-substrate molecular weight on sludge anaerobic co-digestion
| PRJNA1095183 | ENA
Project description:Start-up of Anaerobic Co-digestion of Poultry Litter and Wheat Straw by Gradually Increasing Organic Loading Rate: Methane Production and Microbial Community Analysis