Project description:Sri Lankan cassava mosaic virus (SLCMV) is a member of cassava mosaic geminiviruses, family Geminiviridae, genus Begomoviruse which causes cassava mosaic disease (CMD). SLCMV is a widespread plant virus in major cassava production area of in Southeast Asia such as Thailand, Vietnam and Cambodia. Cassava cv. Kasetsart 50 (KU50) is one of the most globally famous cultivars in the world which is planted by many Asian countries farmers and industries. A proteomics approach was used to investigate the proteins involved in KU50 leaf response against SLCMV infection. RT-qPCR were applied to validate protein identifications for genes that are differentially expressed.
Project description:We reported the small RNA profiles of disease free and SLCMV infected leaves of susceptible and tolerant genotypes of cassava. The sRNA data generated through high throughput small RNA sequencing revealed critical regulatory role of host and pathogen derived small RNAs during SLCMV infection.
Project description:Background: Oral squamous cell carcinoma (OSCC) is a major world health problem with over 400,000 new cases diagnosed annually. Despite advances in surgery and chemo-radiotherapy, the 5 year survival has remained roughly constant at approximately 50% for several decades. The disease is characterized by both clinical and genetic heterogeneity, so elucidating the molecular basis of this heterogeneity would have significant clinical implications. It is well recognized that OSCCs from Asia that are associated with betel quid chewing are phenotypically distinct from those from the West that are predominantly caused by smoking/drinking, but the genetic basis of these differences are largely unknown. The aim of this study is to examine the most related genetic factors, carcinogenic related pathways, and molecular processes that might be responsible for the phenotypic heterogeneity of OSCC between UK and Sri Lankan population groups. Methods: We have compared the gene expression profiles of OSCCs and normal oral mucosal tissues from both Sri Lankan and UK individuals using Affymetrix gene expression arrays. Results: The gene expression profiles of UK and Sri Lankan OSCC are similar in many respects to other oral cancer expression profiles reported in the literature and were mainly similar to each other. However, genes involved in tumor invasion, metastasis and recurrence were more obviously associated with UK tumors as opposed to those from Sri Lanka. Interestingly, Ingenuity Pathway Analysis (IPA) revealed a highly activated cell-mediated immune response in both Sri Lankan normal and tumor samples relative to UK cohorts, which may, in part, explain the less aggressive behavior of these betel quid-induced OSCCs. Conclusion: The development of OSCCs in both UK and Sri Lankan populations appears largely mediated by similar biological pathways despite the differences related to race, ethnicity, lifestyle, and/or exposure to environmental carcinogens. However, IPA revealed a highly activated “Cell-mediated Immune Response” in Sri Lankan normal and tumor samples relative to UK cohorts. It seems likely, therefore, that any future attempts to personalize treatment for OSCC patients will need to be different in Western and Asian countries to reflect differences in gene expression and the immune status of the patients.
Project description:Background: Oral squamous cell carcinoma (OSCC) is a major world health problem with over 400,000 new cases diagnosed annually. Despite advances in surgery and chemo-radiotherapy, the 5 year survival has remained roughly constant at approximately 50% for several decades. The disease is characterized by both clinical and genetic heterogeneity, so elucidating the molecular basis of this heterogeneity would have significant clinical implications. It is well recognized that OSCCs from Asia that are associated with betel quid chewing are phenotypically distinct from those from the West that are predominantly caused by smoking/drinking, but the genetic basis of these differences are largely unknown. The aim of this study is to examine the most related genetic factors, carcinogenic related pathways, and molecular processes that might be responsible for the phenotypic heterogeneity of OSCC between UK and Sri Lankan population groups. Methods: We have compared the gene expression profiles of OSCCs and normal oral mucosal tissues from both Sri Lankan and UK individuals using Affymetrix gene expression arrays. Results: The gene expression profiles of UK and Sri Lankan OSCC are similar in many respects to other oral cancer expression profiles reported in the literature and were mainly similar to each other. However, genes involved in tumor invasion, metastasis and recurrence were more obviously associated with UK tumors as opposed to those from Sri Lanka. Interestingly, Ingenuity Pathway Analysis (IPA) revealed a highly activated cell-mediated immune response in both Sri Lankan normal and tumor samples relative to UK cohorts, which may, in part, explain the less aggressive behavior of these betel quid-induced OSCCs. Conclusion: The development of OSCCs in both UK and Sri Lankan populations appears largely mediated by similar biological pathways despite the differences related to race, ethnicity, lifestyle, and/or exposure to environmental carcinogens. However, IPA revealed a highly activated M-bM-^@M-^\Cell-mediated Immune ResponseM-bM-^@M-^] in Sri Lankan normal and tumor samples relative to UK cohorts. It seems likely, therefore, that any future attempts to personalize treatment for OSCC patients will need to be different in Western and Asian countries to reflect differences in gene expression and the immune status of the patients. All biopsy specimens of OSCC and normal oral mucosa were harvested with appropriate ethical approval and informed consent of individual patients (LREC 0769). Identical protocols for tissue collection and processing were used in both countries. OSCC samples were obtained from sequential incident cases treated by a single consultant surgeon from 2001 to 2004 at University Hospital of Birmingham, NHS Foundation Trust, Birmingham, UK, and Kandy General Hospital, Kandy, Sri Lanka. A total of 21 UK and 27 Sri Lankan samples yielded RNA of sufficient quality and quantity for microarray analysis. In addition, 8 normal oral mucosa specimens (five samples from UK & three samples from Sri Lankan population) were also profiled. All normal samples were from non-smokers, who did not chew betel quid and did not consume in excess of the national recommended weekly gender allowance of alcohol. Normal samples were taken from individuals with no history of cancer and had no first degree relatives with a history of cancer.
Project description:Cassava plantations in an area of 458 hectares spanning five provinces along the Thailand-Cambodia border were surveyed from October 2018 to July 2019 to determine the prevalence of cassava mosaic disease (CMD) caused by Sri Lankan cassava mosaic virus (SLCMV) in the region. CMD prevalence was 40% in the whole area and 80% in Prachinburi, 43% in Sakaeo, 37% in Burium, 25% in Surin, and 19% in Sisaket provinces. Disease incidence of CMD was highest 43.08% in Sakaeo, followed by 26.78% in Prachinburi, 7% in Burium, 2.58% in Surin, and 1.25% in Sisaket provinces. Disease severity of CMD symptoms was mild chlorosis to moderate mosaic (2-3). The greatest disease severity was recorded in Prachinburi and Sakaeo provinces. Asymptomatic plants were identified in Surin (12%), Prachinburi (5%), Sakaeo (0.2%), and Buriram (0.1%) by PCR analysis. Cassava cultivars CMR-89 and Huai Bong 80 were susceptible to CMD. In 95% of cases, the infection was transmitted by whiteflies (Bemisia tabaci), which were abundant in Sakaeo, Buriram, and Prachinburi but were sparse in Surin; their densities were highest in May and June 2019. Nucleotide sequencing of the mitochondrial cytochrome oxidase 1 (mtCO1) gene of whiteflies in Thailand revealed that it was similar to the mtCO1 gene of Asia II 1 whitefly. Furthermore, the AV1 gene of SLCMV-which encodes the capsid protein-showed 90% nucleotide identity with SLCMV. Phylogenetic analysis of completed nucleotide sequences of DNA-A and DNA-B components of the SLCMV genome determined by rolling circle amplification (RCA) indicated that they were similar to the nucleotide sequence of SLCMV isolates from Thailand, Vietnam, and Cambodia. These results provide important insights into the distribution, impact, and spread of CMD and SLCMV in Thailand.
Project description:The major threat for cassava cultivation on the Indian subcontinent is cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses which are bipartite begomoviruses with DNA A and DNA B components. Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) cause CMD in India. Two isolates of SLCMV infected the cassava cultivar Sengutchi in the fields near Malappuram and Thiruvananthapuram cities of Kerala State, India. The Malappuram isolate was persistent when maintained in the Madurai Kamaraj University (MKU, Madurai, Tamil Nadu, India) greenhouse, whereas the Thiruvananthapuram isolate did not persist. The recovered cassava plants with the non-persistent SLCMV, which were maintained vegetative in quarantine in the University of Basel (Basel, Switzerland) greenhouse, displayed re-emergence of CMD after a six-month period. Interestingly, these plants did not carry SLCMV but carried ICMV. It is interpreted that the field-collected, SLCMV-infected cassava plants were co-infected with low levels of ICMV. The loss of SLCMV in recovered cassava plants, under greenhouse conditions, then facilitated the re-emergence of ICMV. The partial dimer clones of the persistent and non-persistent isolates of SLCMV and the re-emerged isolate of ICMV were infective in Nicotiana benthamiana upon agroinoculation. Studies on pseudo-recombination between SLCMV and ICMV in N. benthamiana provided evidence for trans-replication of ICMV DNA B by SLCMV DNA A.
Project description:BackgroundSri Lankan cassava mosaic virus (SLCMV) is a plant virus causing significant economic losses throughout Southeast Asia. While proteomics has the potential to identify molecular markers that could assist the breeding of virus resistant cultivars, the effects of SLCMV infection in cassava have not been previously explored in detail.ResultsLiquid Chromatography-Tandem Mass Spectrometry (LC/MS-MS) was used to identify differentially expressed proteins in SLCMV infected leaves, and qPCR was used to confirm changes at mRNA levels. LC/MS-MS identified 1,813 proteins, including 479 and 408 proteins that were upregulated in SLCMV-infected and healthy cassava plants respectively, while 109 proteins were detected in both samples. Most of the identified proteins were involved in biosynthetic processes (29.8%), cellular processes (20.9%), and metabolism (18.4%). Transport proteins, stress response molecules, and proteins involved in signal transduction, plant defense responses, photosynthesis, and cellular respiration, although present, only represented a relatively small subset of the detected differences. RT-qPCR confirmed the upregulation of WRKY 77 (A0A140H8T1), WRKY 83 (A0A140H8T7), NAC 6 (A0A0M4G3M4), NAC 35 (A0A0M5JAB4), NAC 22 (A0A0M5J8Q6), NAC 54 (A0A0M4FSG8), NAC 70 (A0A0M4FEU9), MYB (A0A2C9VER9 and A0A2C9VME6), bHLH (A0A2C9UNL9 and A0A2C9WBZ1) transcription factors. Additional upregulated transcripts included receptors, such as receptor-like serine/threonine-protein kinase (RSTK) (A0A2C9UPE4), Toll/interleukin-1 receptor (TIR) (A0A2C9V5Q3), leucine rich repeat N-terminal domain (LRRNT_2) (A0A2C9VHG8), and cupin (A0A199UBY6). These molecules participate in innate immunity, plant defense mechanisms, and responses to biotic stress and to phytohormones.ConclusionsWe detected 1,813 differentially expressed proteins infected cassava plants, of which 479 were selectively upregulated. These could be classified into three main biological functional groups, with roles in gene regulation, plant defense mechanisms, and stress responses. These results will help identify key proteins affected by SLCMV infection in cassava plants.