Project description:Tea is the most popular non-alcoholic caffeine-containing and the oldest beverage in the world. In this study, we de novo assembled the chloroplast (cp) and mitochondrial (mt) genomes of C. sinensis var. assamica cv. Yunkang10 into a circular contig of 157,100 bp and two complete circular scaffolds (701719 bp and 177329 bp), respectively. We correspondingly annotated a total of 141 cp genes and 71 mt genes. Comparative analysis suggests repeat-rich nature of the mt genome compared to the cp genome, for example, with the characterization of 37,878 bp and 149 bp of long repeat sequences and 665 and 214 SSRs, respectively. We also detected 478 RNA-editing sites in 42 protein-coding mt genes, which are ~4.4-fold more than 54 RNA-editing sites detected in 21 protein-coding cp genes. The high-quality cp and mt genomes of C. sinensis var. assamica presented in this study will become an important resource for a range of genetic, functional, evolutionary and comparative genomic studies in tea tree and other Camellia species of the Theaceae family.
Project description:α-Glucosidase and lipase inhibitors play important roles in the treatment of hyperglycaemia and dyslipidemia. To identify novel naturally occurring inhibitors, a bioactivity-guided phytochemical research was performed on the pu-erh tea. One new flavanol, named (-)-epicatechin-3-O-(Z)-coumarate (1), and 16 known analogs (2-17) were isolated from the aqueous extract of the pu-erh tea. Their structures were determined by spectroscopic and chemical methods. Furthermore, the water extract of pu-erh tea and its fractions exhibited inhibitory activities against α-glucosidases and lipases in vitro; compound 15 showed moderate inhibitory effect against sucrase with an IC50 value of 32.5 μmol/L and significant inhibitory effect against maltase with an IC50 value of 1.3 μmol/L. Compounds 8, 10, 11 and 15 displayed moderate activity against a lipase with IC50 values of 16.0, 13.6, 19.8, and 13.3 μmol/L, respectively.